Skip to main content

A user toolkit for analyzing and interfacing with Large Language Models (LLMs)

Project description

kaleiodsciope-logo

Kaleidoscope-SDK

PyPI PyPI - Python Version GitHub DOI Documentation

A user toolkit for analyzing and interfacing with Large Language Models (LLMs)

Overview

kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. These features are exposed via a few high-level APIs, namely:

  • model_instances - Shows a list of all active LLMs instantiated by the model service
  • load_model - Loads an LLM via the model service
  • generate - Returns an LLM text generation based on prompt input
  • module_names - Returns all modules names in the LLM neural network
  • get_activations - Retrieves all activations for a set of modules

Getting Started

Requires Python version >= 3.8

Install

python3 -m pip install kscope

or install from source:

pip install git+https://github.com/VectorInstitute/kaleidoscope-sdk.git

Authentication

In order to submit generation jobs, a designated Vector Institute cluster account is required. Please contact the AI Engineering Team in charge of Kaleidoscope for more information.

Sample Workflow

The following workflow shows how to load and interact with an OPT-175B model on the Vector Institute Vaughan cluster.

#!/usr/bin/env python3
import kscope
import time

# Establish a client connection to the Kaleidoscope service
# If you have not previously authenticated with the service, you will be prompted to now
client = kscope.Client(gateway_host="llm.cluster.local", gateway_port=3001)

# See which models are supported
client.models

# See which models are instantiated and available to use
client.model_instances

# Get a handle to a model. If this model is not actively running, it will get launched in the background.
# In this example we want to use the OPT-175B model
opt_model = client.load_model("OPT-175B")

# If the model was not actively running, this it could take several minutes to load. Wait for it come online.
while opt_model.state != "ACTIVE":
    time.sleep(1)

# Sample text generation w/ input parameters
text_gen = opt_model.generate("What is the answer to life, the universe, and everything?", {'max_tokens': 5, 'top_k': 4, 'temperature': 0.5})
dir(text_gen) # display methods associated with generated text object
text_gen.generation['text'] # display only text
text_gen.generation['logprobs'] # display logprobs
text_gen.generation['tokens'] # display tokens

# Now let's retrieve some activations from the model
# First, show a list of modules in the neural network
print(opt_model.module_names)

# Setup a request for module acivations for a certain module layer
requested_activations = ['decoder.layers.0']
activations = opt_model.get_activations("What are activations?", requested_activations)
print(activations)

Documentation

Full documentation and API reference are available at: http://kaleidoscope-sdk.readthedocs.io.

Contributing

Contributing to kaleidoscope is welcomed. See Contributing for guidelines.

License

MIT

Citation

Reference to cite when you use Kaleidoscope in a project or a research paper:

Sivaloganathan, J., Coatsworth, M., Willes, J., Choi, M., & Shen, G. (2022). Kaleidoscope. http://VectorInstitute.github.io/kaleidoscope. computer software, Vector Institute for Artificial Intelligence. Retrieved from https://github.com/VectorInstitute/kaleidoscope-sdk.git.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kscope-0.4.1.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

kscope-0.4.1-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file kscope-0.4.1.tar.gz.

File metadata

  • Download URL: kscope-0.4.1.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for kscope-0.4.1.tar.gz
Algorithm Hash digest
SHA256 c817855e2c4958bc41f0ad9afd129fd7418273deaf32221c971a3b5d06839211
MD5 d81b7566ef0ea88cef39caf00fa250df
BLAKE2b-256 475c217d5d3b05faa072d4daddbff74ec35d58c26c5f491de0feb15ccd3f7212

See more details on using hashes here.

File details

Details for the file kscope-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: kscope-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for kscope-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a1a0c843aea5d19da2503e2e68ca24adcb03141a03a5bcd96a2b5d0d5ad7a121
MD5 f432063a8655b6be9a29e75148fe7620
BLAKE2b-256 b25b856da428030910019be33f290898b011cbf41f1597280f8771d5ee44cf01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page