A simple yet powerful sequence clustering tool
Project description
@dib-lab/kSpider
📖 Table of Contents
➤ Table of Contents
➤ Introduction
kSpider is a user-friendly command line interface program to perform sequence clustering. First, it creates an index using kProcessor for the source sequences. Second, it constructs a pairwise containment matrix through a single iteration over the index. Finally, it builds a graph from the pairwise matrix and applies a connected-components graph algorithm to extract the clusters with a user-defined containment threshold.
Documentations are hosted at https://dib-lab.github.io/kSpider
➤ Quick Installation (pip)
pip install kSpider
➤ Manual build / Development
Install dependencies
sudo apt-get install g++ swig cmake python3-dev zlib1g-dev libghc-bzlib-dev python3-distutils libboost-all-dev
git clone https://github.com/dib-lab/kSpider.git
cd kSpider
git submodule update --init --recursive
cmake -Bbuild
cmake --build build
bash build_wrapper.sh
➤ Authors
Mohamed Abuelanin | Tamer Manosur |
➤ License
Licensed under MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file kSpider-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: kSpider-2.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 666b573fbaae0ff473cebc276919e745ba506eeeee4588eac5c5922c7b048250 |
|
MD5 | 2602c39163dab8cd2b6e829e98aa00cf |
|
BLAKE2b-256 | 6c900306e8de60336d26e3a63f909ac4ef4cec983a25912cd82ae9ce6dbf7f95 |
File details
Details for the file kSpider-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: kSpider-2.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef202d84b6b9796eed8eebf2114530a5be79bbab0207ab48519c0c0959b0302c |
|
MD5 | 83c815dbc128de311add0b3f29f01a6c |
|
BLAKE2b-256 | afe05cf5195c68584695c0dac5f7abb0459a158bfb7035313f67ee4287d35bbc |
File details
Details for the file kSpider-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: kSpider-2.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ca19574e3329ddcee3c275f2fae5b755068b99bc25fa31923b4e35776e4d370 |
|
MD5 | dbf4eaceee97754a6c777825d0f2d9c1 |
|
BLAKE2b-256 | 70fe6099ff13382bd3d8767d52264250e190f8f541272c833c9ee221c46d7796 |
File details
Details for the file kSpider-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: kSpider-2.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bbb2805cdfe56e9afcb9dfc8e011b78dcf8f302a96c2c64cdd9c80af5263944 |
|
MD5 | 3d374e52eb60457cdbb93a5be9c43db2 |
|
BLAKE2b-256 | 455907563bb77c7914bd088c5252e7f5a0ed5cfbe0ed5952b18701d0b0995015 |
File details
Details for the file kSpider-2.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: kSpider-2.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fa5a354fef838cb6601480b26466af4137776cb52bbda040a1aa2352c3b27d5 |
|
MD5 | 9dce19f2e2d1914cfb4a292d3e2eabb4 |
|
BLAKE2b-256 | 92065ace296a64c724cb57f3c815adddc0119915f8b940f73ceefa88605c1abd |