Kernel SVM library based on sklearn and GPlib.
Project description
kSVMlib
Kernel SVM library based on sklearn and GPlib. Provides similar functionality to GPlib for SVMs.
Setup kSVMlib
- Create and activate virtualenv (for python2) or venv (for python3)
# for python3
python3 -m venv .env
# or for python2
python2 -m virtualenv .env
source .env/bin/activate
- Upgrade pip
python -m pip install --upgrade pip
- Install kSVMlib package
python -m pip install ksvmlib
Use kSVMlib
- Import kSVMlib to use it in your python script.
import ksvmlib
- Generate some random data.
import numpy as np
data = {}
data['X'] = np.vstack((
np.random.multivariate_normal([1, 1], [[1, 0], [0, 1]], 100),
np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], 100)
))
data['Y'] = np.vstack((
np.ones((100, 1)),
np.zeros((100, 1)),
))
validation = ksvmlib.dm.RandFold(fold_len=0.2, n_folds=1)
train_set, test_set = validation.get_folds(data)[0]
- Initialize the KSVM model and a metric to measure the results.
model = ksvmlib.KSVM(ksvmlib.ker.SquaredExponential())
accuracy = ksvmlib.me.Accuracy()
- Fit the model to the data.
fitting_method = ksvmlib.fit.GridSearch(
obj_fun=accuracy.fold_measure,
max_fun_call=300
)
train_validation = ksvmlib.dm.RandFold(fold_len=0.2, n_folds=3)
log = fitting_method.fit(model, train_validation.get_folds(
train_set
))
print("Fitting log: {}".format(log))
- Finally plot the results.
print("Accuracy: {}".format(accuracy.measure(model, train_set, test_set)))
ksvmlib.plot.kernel_sort_data(model, test_set)
- There are more examples in examples/ directory. Check them out!
Develop kSVMlib
- Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../ksvmlib
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ksvmlib-0.1.1.tar.gz
(17.1 kB
view details)
Built Distribution
File details
Details for the file ksvmlib-0.1.1.tar.gz
.
File metadata
- Download URL: ksvmlib-0.1.1.tar.gz
- Upload date:
- Size: 17.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea6d2dd6cc2be646c49e491fcc36634b17ab7be9d8057d08db492f187f9e5a1f |
|
MD5 | 5c60941bd6f30da5e304a7ea96c8b66f |
|
BLAKE2b-256 | 5d2be641234cd20a1612329f52f0c1247ad6dc7ef6be9107c68b9a6b5a4847e9 |
File details
Details for the file ksvmlib-0.1.1-py2.py3-none-any.whl
.
File metadata
- Download URL: ksvmlib-0.1.1-py2.py3-none-any.whl
- Upload date:
- Size: 19.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a17358d533b66b0259a70fe3d5ec5ac278aae4231a1627da463f443d33814b1 |
|
MD5 | 375c28b5d76dca088ff0124ef4f4e139 |
|
BLAKE2b-256 | ccbd52c65d7b11b1424f232649aea43130edb8a9ed101a6f795590f40ec98b94 |