KT17/KT14 magnetic field model for Mercury written in C++ with a Python wrapper. See Korth et al., 2015 (JGR) and Korth et al., 2017 (GRL) for more details.
Project description
KT17
KT17/KT14 magnetic field model for Mercury written in C++ with a Python wrapper. See Korth et al., 2015 (JGR) and Korth et al., 2017 (GRL) for more details on the models themselves.
Installation
Best to install using pip3
:
pip3 install KT17 --user
The installation will require the following packages:
- numpy
- scipy
- matplotlib
Alternatively clone this repo and build a wheel:
git clone https://github.com/mattkjames7/KT17.git
cd KT17
python3 setup.py bdist_wheel
pip3 install dist/KT17-1.0.0-py3-none-any.whl
NOTE: This module includes C++ code which does all of the model calculating and tracing. The package includes libkt.so
for Linux and libkt.dll
for Windows 10 - if either of these files can't be loaded, the code will attempt to recompile. If the compilation fails, then make sure that you have g++
(version >= 5) and make
installed on your system. For Windows users, install TDM-GCC.
Usage
Model parameters
Both KT17.ModelField()
and KT17.TraceField()
functions accept five different keyword arguments (**kwargs
) which affect the model:
Parameter | Model | Description |
---|---|---|
Rsm |
KT14 | Magnetopause standoff distance (RM). |
t1 |
KT14 | Disk current field magnitude. |
t2 |
KT14 | Quasi-Harris sheet field magnitude. |
Rsun |
KT17 | Distance of Mercury from the Sun (AU) |
DistIndex |
KT17 | Anderson et al., 2013 disturbance index, in the range 0-97 |
If the KT17 parameters are provided, they are used to calculate the appropriate KT14 set of parameters as defined in Korth et al., 2017.
Obtaining model field vectors
To get model field vectors for some position(s) in the magnetosphere:
import KT17
#default model
Bx,By,Bz = KT17.ModelField(x,y,z)
#Custom KT14 model
Bx,By,Bz = KT17.ModelField(x,y,z,Rsm=1.3,t1=7.0,t2=2.5)
#Custom KT17 model
Bx,By,Bz = KT17.ModelField(x,y,z,Rsun=0.4,DistIndex=25.0)
where x
, y
and z
are either scalars or arrays of position(s) in
the MSM coordinate system. The returned Bx
, By
and Bz
contain the magnetic
field vector(s) at each position in nT. For positions which are outside of the magnetopause, the magnetic field components are returned as NAN.
Tracing the magnetic field
To trace the magnetic field, use the TraceField
object:
T = KT17.TraceField(x0,y0,z0,**kwargs)
where x0
, y0
and z0
are the starting position(s) of the traces in
MSM coordinates. The parameters of the trace can be provided using **kwargs
- see the KT17.Tracefield
dosctring for more information using help(KT17.TraceField)
or KT17.TraceField?
in ipython.
TraceField
can be saved to a file and reloaded, e.g.:
#save the Trace object
T.Save('Trace.bin')
#load the file
T = KT17.TraceField('Trace.bin')
Other routines
For a quick plot of the magnetic field in the X-Z plane run:
KT17.TestTrace()
To find out if a position in MSM coordinates is actually within the magnetopause or not, run the following:
KT17.WithinMP(x,y,z,Rsm=1.42)
To get the latitude and local times of the northern and southern open-closed field line boundaries, run:
ocb = KT17.ReadOCB()
where ocb
is a numpy.recarray
object which contains the following fields:
Mlt |
Magnetic local time of the boundary. |
LctN |
Local time in the northern hemisphere. |
LctS |
Local time in the southern hemisphere. |
Mlat |
Invariant latitude of the boundary. |
LatN |
Latitude of the northern boundary. |
LatS |
Latitude of the southern boundary. |
References
Anderson, B. J., Johnson, C. L., and Korth, H. (2013), A magnetic disturbance index for Mercury's magnetic field derived from MESSENGER Magnetometer data, Geochem. Geophys. Geosyst., 14, 3875– 3886, doi:10.1002/ggge.20242
Korth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., Solomon, S. C., and McNutt, R. L. (2015), Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause. J. Geophys. Res. Space Physics, 120, 4503– 4518. doi: 10.1002/2015JA021022.Korth, H., Tsyganenko, N. A., Johnson, C. L., Philpott, L. C., Anderson, B. J., Al Asad, M. M., Solomon, S. C., and McNutt, R. L. (2015), Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause. J. Geophys. Res. Space Physics, 120, 4503– 4518. doi: 10.1002/2015JA021022.
Korth, H., Johnson, C. L., Philpott, L., Tsyganenko, N. A., & Anderson, B. J. (2017). A dynamic model of Mercury's magnetospheric magnetic field. Geophysical Research Letters, 44, 10,147– 10,154. https://doi.org/10.1002/2017GL074699
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file KT17-1.1.1.tar.gz
.
File metadata
- Download URL: KT17-1.1.1.tar.gz
- Upload date:
- Size: 94.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.28.2 rfc3986/1.5.0 tqdm/4.66.2 urllib3/1.26.15 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b056fbd381791427390a551760d496207bbd68f5d1cd8d73f91cfef5f1c193f |
|
MD5 | 4825972d923300fbf76a85202c59f5f4 |
|
BLAKE2b-256 | 5cc7bbaf0a7918c9447b1d546dfb4e6242f944e8b2bd3642e9247d58678fb06c |