Skip to main content

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation, depth maps, and optical flow.

Project description

Kubric

Blender Kubruntu Test Coverage Docs

A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as instance segmentation masks, depth maps, and optical flow.

Motivation and design

We need better data for training and evaluating machine learning systems, especially in the context of unsupervised multi-object video understanding. Current systems succeed on toy datasets, but fail on real-world data. Progress could be greatly accelerated if we had the ability to create suitable datasets of varying complexity on demand. Kubric is mainly built on-top of pybullet (for physics simulation) and Blender (for rendering); however, the code is kept modular to potentially support different rendering backends.

Getting started

For instructions, please refer to https://kubric.readthedocs.io

Assuming you have docker installed, to generate the data above simply execute:

git clone https://github.com/google-research/kubric.git
cd kubric
docker pull kubricdockerhub/kubruntu
docker run --rm --interactive \
           --user $(id -u):$(id -g) \
           --volume "$(pwd):/kubric" \
           kubricdockerhub/kubruntu \
           /usr/bin/python3 examples/helloworld.py
ls output

Kubric employs Blender 2.93 (see here), so if you want to inspect the generated *.blend scene file for interactive inspection (i.e. without needing to render the scene), please make sure you have installed the correct Blender version.

Requirements

  • A pipeline for conveniently generating video data.
  • Physics simulation for automatically generating physical interactions between multiple objects.
  • Good control over the complexity of the generated data, so that we can evaluate individual aspects such as variability of objects and textures.
  • Realism: Ideally, the ability to span the entire complexity range from CLEVR all the way to real-world video such as YouTube8. This is clearly not feasible, but we would like to get as close as possible.
  • Access to rich ground truth information about the objects in a scene for the purpose of evaluation (eg. object segmentations and properties)
  • Control the train/test split to evaluate compositionality and systematic generalization (for example on held-out combinations of features or objects)

Challenges and datasets

Generally, we store datasets for the challenges in this Google Cloud Bucket. More specifically, these challenges are dataset contributions of the Kubric CVPR'22 paper:

Pointers to additional datasets/workers:

Bibtex

@article{greff2021kubric,
    title = {Kubric: a scalable dataset generator}, 
    author = {Klaus Greff and Francois Belletti and Lucas Beyer and Carl Doersch and
              Yilun Du and Daniel Duckworth and David J Fleet and Dan Gnanapragasam and
              Florian Golemo and Charles Herrmann and Thomas Kipf and Abhijit Kundu and
              Dmitry Lagun and Issam Laradji and Hsueh-Ti (Derek) Liu and Henning Meyer and
              Yishu Miao and Derek Nowrouzezahrai and Cengiz Oztireli and Etienne Pot and
              Noha Radwan and Daniel Rebain and Sara Sabour and Mehdi S. M. Sajjadi and Matan Sela and
              Vincent Sitzmann and Austin Stone and Deqing Sun and Suhani Vora and Ziyu Wang and
              Tianhao Wu and Kwang Moo Yi and Fangcheng Zhong and Andrea Tagliasacchi},
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022},
}

Disclaimer

This is not an official Google Product

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kubric-nightly-2023.12.27.tar.gz (72.1 kB view details)

Uploaded Source

Built Distribution

kubric_nightly-2023.12.27-py3-none-any.whl (98.3 kB view details)

Uploaded Python 3

File details

Details for the file kubric-nightly-2023.12.27.tar.gz.

File metadata

  • Download URL: kubric-nightly-2023.12.27.tar.gz
  • Upload date:
  • Size: 72.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.17

File hashes

Hashes for kubric-nightly-2023.12.27.tar.gz
Algorithm Hash digest
SHA256 b3ea77e8af4c8340ca085b7ca987849724e48b5e0bf7d496bbfe27c51b156eda
MD5 d2a716259abf48b0ce203becf7a6b6c9
BLAKE2b-256 70fe88eaee35b929971f12fccd1f0886ddc8806175ecc16204d558d51890c1b5

See more details on using hashes here.

File details

Details for the file kubric_nightly-2023.12.27-py3-none-any.whl.

File metadata

File hashes

Hashes for kubric_nightly-2023.12.27-py3-none-any.whl
Algorithm Hash digest
SHA256 6c467904ee965fa33a59d9a1f619b2468aa14769ae182f42c106da076722ea1a
MD5 cd1bceb88272a88e68314b2708955cc2
BLAKE2b-256 b6ac3328945f5ff6930c1aa140f33bb79462fcfaedd4571034bc1961859f008b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page