Korean morphological analyzer and tagger.
Project description
KUKoLex
KUKoLex is a Korean morphological analyzer and tagger made by NLP&AI LAB at Korea University. Main functions are as follows.
Requirements
Python 3
Install
From PyPi:
pip install kukolex
From GitHub:
pip install git+https://github.com/nlpai-lab/KU_KoLex.git
Usage
- pos_tagging(input)
It takes "sentences" as an input and gives a list of morphemes and their POS tags as an output
- morphs(input)
It takes "sentences" as an input and gives a list of morphemes.
- pos(input)
It takes "sentences" as an input and gives a list of POS tags.
- nouns(input)
It takes "sentences" as an input and gives a list of nouns.
from KUKoLex import kukolex
kukolex.pos_tagging('안녕하세요. 저의 이름은 홍길동입니다.')
# [('안녕', 'NNG'), ('하', 'XSA'), ('시', 'EP'), ('어요', 'EM'), ('.', 'SF'), ('저', 'NP'), ('의', 'JKG'), ('이름', 'NNG'), ('은', 'JX'), ('홍길동', 'NNP'), ('이', 'VCP'), ('ㅂ니다', 'EM'), ('.', 'SF')]
kukolex.morphs('안녕하세요. 저의 이름은 홍길동입니다.')
# ['안녕', '하', '시', '어요', '.', '저', '의', '이름', '은', '홍길동', '이', 'ㅂ니다', '.']
kukolex.pos('안녕하세요. 저의 이름은 홍길동입니다.')
# ['NNG', 'XSA', 'EP', 'EM', 'SF', 'NP', 'JKG', 'NNG', 'JX', 'NNP', 'VCP', 'EM', 'SF']
kukolex.nouns('안녕하세요. 저의 이름은 홍길동입니다.')
# ['안녕', '저', '이름', '홍길동']
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
kukolex-0.0.7-py3-none-any.whl
(69.5 MB
view hashes)