Skip to main content

A repository with a wide range of datasets, synthetic and real-life to stress-test the kxy package

Project description



A Python package to access ML datasets (UCI, Kaggle, synthetic, etc.) in a normalized format.

License PyPI Latest Release Downloads

Example real-life datasets

Loading the data

>>> from kxy_datasets.uci_regressions import AirQuality
>>> air_quality = AirQuality()
>>> print(air_quality.name)
UCIAirQuality

Retrieving target and explanatory variables as numpy arrays

>>> y, x = air_quality.x, air_quality.y
>>> print(air_quality.x.shape)
(8991, 14)
>>> print(air_quality.y.shape)
(8991, 1)
>>> print(len(air_quality))
8991

Reading the problem type (classification/regression)

>>> print(air_quality.problem_type)
regression

Retrieving the data as a dataframe

>>> air_quality.df
       Date  Time  CO(GT)  PT08.S1(CO)  NMHC(GT)  C6H6(GT)  PT08.S2(NMHC)  NOx(GT)  PT08.S3(NOx)  NO2(GT)  PT08.S4(NO2)  PT08.S5(O3)     T    RH      AH
0     273.0    18     2.6       1360.0     150.0      11.9         1046.0    166.0        1056.0    113.0        1692.0       1268.0  13.6  48.9  0.7578
1     273.0    19     2.0       1292.0     112.0       9.4          955.0    103.0        1174.0     92.0        1559.0        972.0  13.3  47.7  0.7255
2     273.0    20     2.2       1402.0      88.0       9.0          939.0    131.0        1140.0    114.0        1555.0       1074.0  11.9  54.0  0.7502
3     273.0    21     2.2       1376.0      80.0       9.2          948.0    172.0        1092.0    122.0        1584.0       1203.0  11.0  60.0  0.7867
4     273.0    22     1.6       1272.0      51.0       6.5          836.0    131.0        1205.0    116.0        1490.0       1110.0  11.2  59.6  0.7888
...     ...   ...     ...          ...       ...       ...            ...      ...           ...      ...           ...          ...   ...   ...     ...
9352  456.0    10     3.1       1314.0    -200.0      13.5         1101.0    472.0         539.0    190.0        1374.0       1729.0  21.9  29.3  0.7568
9353  456.0    11     2.4       1163.0    -200.0      11.4         1027.0    353.0         604.0    179.0        1264.0       1269.0  24.3  23.7  0.7119
9354  456.0    12     2.4       1142.0    -200.0      12.4         1063.0    293.0         603.0    175.0        1241.0       1092.0  26.9  18.3  0.6406
9355  456.0    13     2.1       1003.0    -200.0       9.5          961.0    235.0         702.0    156.0        1041.0        770.0  28.3  13.5  0.5139
9356  456.0    14     2.2       1071.0    -200.0      11.9         1047.0    265.0         654.0    168.0        1129.0        816.0  28.5  13.1  0.5028

[8991 rows x 15 columns]
>>> air_quality.y_column
'C6H6(GT)'
>>> air_quality.x_columns
['Date', 'Time', 'CO(GT)', 'PT08.S1(CO)', 'NMHC(GT)', 'PT08.S2(NMHC)', 'NOx(GT)', 'PT08.S3(NOx)', 'NO2(GT)', 'PT08.S4(NO2)', 'PT08.S5(O3)', 'T', 'RH', 'AH']

UCI classification datasets

>>> from kxy_datasets.uci_classifications import BankNote

Kaggle regression datasets

>>> from kxy_datasets.kaggle_regressions import HousePricesAdvanced

Kaggle classification datasets

>>> from kxy_datasets.kaggle_classifications import Titanic

Example synthetic datasets

Synthetic regression datasets (with known theoretical-best performance achievable)

>>> from kxy_datasets.synthetic_regressions import SQRTABSReg

Synthetic classification datasets (with known theoretical-best performance achievable)

>>> from kxy_datasets.synthetic_classifications import EllipticalBoundaryBin

Data valuation and model-free variable selection with the kxy package

Data valuation

>>> from kxy_datasets.kaggle_classifications import Titanic
>>> titanic = Titanic()
>>> titanic.data_valuation()
[====================================================================================================] 100% ETA: 0s   
  Achievable R-Squared Achievable Log-Likelihood Per Sample Achievable Accuracy
0                 0.53                            -2.89e-01                0.92

Model-free variable selection

>>> titanic.variable_selection()
[====================================================================================================] 100% ETA: 0s   
                    Variable Running Achievable R-Squared Running Achievable Accuracy
Selection Order                                                                      
0                No Variable                         0.00                        0.62
1                        Sex                         0.26                        0.79
2                PassengerId                         0.27                        0.79
3                     Pclass                         0.37                        0.84
4                      Parch                         0.37                        0.84
5                        Age                         0.48                        0.90
6                   Embarked                         0.48                        0.90
7                      SibSp                         0.53                        0.92
8                       Fare                         0.53                        0.92

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for kxy-datasets, version 0.0.13
Filename, size File type Python version Upload date Hashes
Filename, size kxy_datasets-0.0.13.tar.gz (16.1 kB) File type Source Python version None Upload date Hashes View
Filename, size kxy_datasets-0.0.13-py3-none-any.whl (18.5 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page