Skip to main content

用于调用ascendc编写的算子

Project description

1 功能描述

由于在ascendc算子开发过程中运行算子比较复杂,为了简化算子的运行,将运行算子变成可以用python直接调用的函数。所以编写了此代码。

2 安装

pip install l0n0lacl

3 运行算子实例

3.1 先切换到cann环境,比如我的环境是:

source /home/HwHiAiUser/Ascend/ascend-toolkit/set_env.sh

3.2 先安装我们编写的算子

bash custom_opp_xxx_aarch64.run

3.3 创建算子运行器

from l0n0lacl import *
ascendc_gelu = OpRunner("Gelu", op_path_prefix='customize')

3.4 调用算子

3.4.1 先看调用传参顺序

在算子工程编译后,会有代码生成,在算子工程目录: ${算子目录}/build_out/autogen/aclnn_xxx.h中可以找到aclnnXXXGetWorkspaceSize函数。以Gelu为例:

__attribute__((visibility("default")))
aclnnStatus aclnnGeluGetWorkspaceSize(
    const aclTensor *x,
    const aclTensor *out,
    uint64_t *workspaceSize,
    aclOpExecutor **executor);

可以看到参数为 x, out, workspaceSize, executor。其中 workspaceSize, executor不需要管。

3.4.2 调用算子

import torch
from l0n0lacl import *
ascendc_gelu = OpRunner("Gelu", op_path_prefix='customize')
target_dtype = torch.float
x = torch.empty(shape, dtype=target_dtype).uniform_(-1, 1)
y = torch.empty(shape, dtype=target_dtype).zero_()
out = ascendc_gelu(x.numpy(), y.numpy()).to_cpu()
print(out)

4. api参考

4.1 AclNDTensor

class AclNDTensor:
    def __init__(self, np_array: np.ndarray):
        pass
    def to_cpu(self):
        pass

numpy ndarray与ascend nd tensor间的桥梁

4.1.1 __init__

  • np_array: numpy的tensor

4.1.2 to_cpu

将运算结果从npu拷贝到cpu

4.2 OpRunner

class OpRunner:
    def __init__(self, name, op_path_prefix='customize', op_path=None, device_id=0) -> None:
        pass
    def __call__(self, *args, outCout=1, argtypes=None, stream=None) -> Union[AclNDTensor, List[AclNDTensor]]:
        pass
    def sync_stream(self)->None:
        pass

4.2.1 __init__

  • name:算子名称,
  • op_path_prefix: 算子工程中CMakePresets.json文件中vender_name的值。默认是customize,可以不传
"vendor_name": {
    "type": "STRING",
    "value": "customize"
},
  • op_path: 算子libcust_opapi.so库的绝对位置。不传。
  • device_id: 设备ID。默认0

4.2.2 __call__

  • args: 表示传给aclnnXXXGetWorkspaceSize除了workspaceSize, executor的参数
  • outCout : 表示算子的输出个数。如果输出个数为1,返回一个AclNDTensor。如果输出个数大于1,返回List[AclNDTensor]
  • argtypes: 表示aclnnXXXGetWorkspaceSize的参数ctypes参数类型,对于特别复杂的算子,如果发现调用异常,可以手动指定类型。 比如(仅用于举例,其实可以不传,自动推导就可运行。但是当发现运行异常的情况下,可以自己指定),对于:
__attribute__((visibility("default")))
aclnnStatus aclnnCumsumGetWorkspaceSize(
    const aclTensor *x,
    const aclTensor *axis,
    bool exclusiveOptional,
    bool reverseOptional,
    const aclTensor *out,
    uint64_t *workspaceSize,
    aclOpExecutor **executor);
import ctypes
from l0n0lacl import *
ascendc_cumsum = OpRunner("Cumsum")
target_dtype = np.float32
data_range = (-10, 10)
shape = [100, 3, 2304]
axis_py = 1
exclusive = True
reverse = False
x = np.random.uniform(*data_range, shape).astype(target_dtype)
axis = np.array([axis_py]).astype(np.int32)
golden: np.ndarray = tf.cumsum(x, axis_py, exclusive, reverse, argtypes=[
    ctypes.c_void_p, # x
    ctypes.c_void_p, # axis
    ctypes.c_bool,   # exclusiveOptional
    ctypes.c_bool,   # reverseOptional
    ctypes.c_void_p, # out
    ctypes.c_void_p, # workspaceSize
    ctypes.c_void_p, # executor
]).numpy()
y = np.ones_like(golden, golden.dtype) * 123
ascendc_cumsum(x, axis, exclusive, reverse,  y).to_cpu()
print(y)
  • stream 如果是多stream的情况下,可以自己指定stream: 例如:
import numpy as np
from l0n0lacl import *
ascendc_gelu = OpRunner("Gelu", op_path_prefix='customize')
target_dtype = np.float32
shape = [10, 10]
x = np.random.uniform(-10, 10, shape).astype(target_dtype)
y = np.zeros_like(x, dtype=target_dtype)
with AclStream(0) as stream:
    out = ascendc_gelu(x, y, stream=stream).to_cpu()
print(out)

4.2.3 sync_stream

用于同步stream

4.3 verify_result

参考自:https://gitee.com/ascend/samples/blob/master/operator/AddCustomSample/KernelLaunch/AddKernelInvocationNeo/scripts/verify_result.py

def verify_result(real_result:numpy.ndarray, golden:numpy.ndarray):
    pass

判断精度是否符合 float16: 千分之一 float32: 万分之一 int16,int32,int8: 0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

l0n0lacl-0.0.3.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

l0n0lacl-0.0.3-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file l0n0lacl-0.0.3.tar.gz.

File metadata

  • Download URL: l0n0lacl-0.0.3.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for l0n0lacl-0.0.3.tar.gz
Algorithm Hash digest
SHA256 e60084a03b4481b7c170b3e446d583630c7dfd9e1f4594a0e2c980e7f7e9d1a4
MD5 ae25605a9e1eaf97580498dc5328036d
BLAKE2b-256 d4f05a01b2d70f31f08e0730c7f27035185b77dbaeb1311e02146cd65805e9cb

See more details on using hashes here.

File details

Details for the file l0n0lacl-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: l0n0lacl-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for l0n0lacl-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 bfdd9a2850e0094e9c76af10a0b9612559e6813fc3a9e845a60c42a3e757e5bc
MD5 e4c85ff122f580daaad0d9ac50d09921
BLAKE2b-256 d5db2f978ff08ec8af450dca6e444d937baffd0410427af37813a8021580d5ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page