This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Python package for solving large scale L1 regularizedleast squares problems.

Project Description

This is a large scale L1 regularized Least Square (L1-LS) solver written in Python. The code is based on the MATLAB code made available on Stephen Boyd’s l1_ls page.


You can install the bleeding edge directly from the source:

pip install git+

This package is also available on PyPi.

pip install l1ls


The module exposes two functions:

  • l1ls(A, y, lmbda, x0=None, At=None, m=None, n=None, tar_gap=1e-3, quiet=False, eta=1e-3, pcgmaxi=5000), and,
  • l1ls_nonneg(A, y, lmbda, x0=None, At=None, m=None, n=None, tar_gap=1e-3, quiet=False, eta=1e-3, pcgmaxi=5000)

They can be used as follows:

import l1ls as L
import numpy as np

A = np.array([[1, 0, 0, 0.5], [0, 1, 0.2, 0.3], [0, 0.1, 1, 0.2]])
x0 = np.array([1, 0, 1, 0], dtype='f8')  # Original signal
y =                            # noise free signal
lmbda = 0.01                             # regularization parameter
rel_tol = 0.01

[x, status, hist] = L.l1ls(A, y, lmbda, tar_gap=rel_tol)
# answer_x = np.array([0.993010, 0.00039478, 0.994096, 0.00403702])

If your matrix A is sparse, pass it in CSR format format for best performance.


  • S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An Interior-Point Method for Large-Scale l1-Regularized Least Squares, (2007), IEEE Journal on Selected Topics in Signal Processing, 1(4):606-617.
Release History

Release History

This version
History Node


History Node


History Node


Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting