This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

This is a large scale L1 regularized Least Square (L1-LS) solver written in Python. The code is based on the MATLAB code made available on Stephen Boyd’s l1_ls page.

Installation

You can install the bleeding edge directly from the source:

pip install git+https://github.com/musically-ut/l1-ls.py.git@master#egg=l1ls

This package is also available on PyPi.

pip install l1ls

Usage

The module exposes two functions:

  • l1ls(A, y, lmbda, x0=None, At=None, m=None, n=None, tar_gap=1e-3, quiet=False, eta=1e-3, pcgmaxi=5000), and,
  • l1ls_nonneg(A, y, lmbda, x0=None, At=None, m=None, n=None, tar_gap=1e-3, quiet=False, eta=1e-3, pcgmaxi=5000)

They can be used as follows:

import l1ls as L
import numpy as np

A = np.array([[1, 0, 0, 0.5], [0, 1, 0.2, 0.3], [0, 0.1, 1, 0.2]])
x0 = np.array([1, 0, 1, 0], dtype='f8')  # Original signal
y = A.dot(x0)                            # noise free signal
lmbda = 0.01                             # regularization parameter
rel_tol = 0.01

[x, status, hist] = L.l1ls(A, y, lmbda, tar_gap=rel_tol)
# answer_x = np.array([0.993010, 0.00039478, 0.994096, 0.00403702])

If your matrix A is sparse, pass it in CSR format format for best performance.

Reference

  • S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An Interior-Point Method for Large-Scale l1-Regularized Least Squares, (2007), IEEE Journal on Selected Topics in Signal Processing, 1(4):606-617.
Release History

Release History

0.2.1

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting