Skip to main content

Basic usage script for LabMT1.0 dataset

Project description

TL;DR a simple labMT usage script

a python module for using the labMT1.0 dataset

no dependencies, unless using the plot function (then we use matplotlib)


The Python script uses this module to test a subsample of Twitter data:

from storyLab import *
labMT,labMTvector,labMTwordList = emotionFileReader(returnVector=True)

## take a look at these guys
print labMT['laughter']
print labMTvector[0:5]
print labMTwordList[0:5]

## test shift a subsample of two twitter days
import codecs ## handle utf8
f ="25.01.14.txt","r","utf8")
saturday =
f ="28.01.14.txt","r","utf8")
tuesday =

## compute valence score
saturdayValence = emotion(saturday,labMT)
tuesdayValence = emotion(tuesday,labMT)
print 'the valence of {0} is {1}'.format('saturday',saturdayValence)
print 'the valence of {0} is {1}'.format('tuesday',tuesdayValence)

## compute valence score and return frequency vector for generating wordshift
saturdayValence,saturdayFvec = emotion(saturday,labMT,shift=True,happsList=labMTvector)
tuesdayValence,tuesdayFvec = emotion(tuesday,labMT,shift=True,happsList=labMTvector)

## make a shift: shift(values,ref,comp)
shiftMag,shiftType = shift(labMTvector,tuesdayFvec,saturdayFvec)
## take the absolute value of the shift magnitude
shiftMagAbs = map(abs,shiftMag)

## sort them both
indices = sorted(range(len(shiftMag)), key=shiftMagAbs.__getitem__, reverse=True)
sortedMag = [shiftMag[i] for i in indices]
sortedType = [shiftType[i] for i in indices]
sortedWords = [labMTwordList[i] for i in indices]

## take a peek at the top words
print indices[0:10]
print sortedMag[0:20]
print sortedType[0:20]
print sortedWords[0:20]

## print each of these to a file
f = open("sampleSortedMag.csv","w")
for val in sortedMag:

f = open("sampleSortedType.csv","w")
for val in sortedType:

f = open("sampleSortedWords.csv","w")
for val in sortedWords:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
labMTsimple-0.3.2.tar.gz (11.1 MB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page