Skip to main content

Labelator.io python client

Project description

Labelator.io - python client

Python client for Labelator.io - labeling and ML training studio

Install

pip install labelatorio

Getting your API token

Click on "user" icon in the right-top corner, select "User settings". Click on Get API token. Copy token into clipboard.

Docs:

Full Labelator.io documentation can be found here docs.labelator.io

Page dedicated this client can be found here

Usage

Connecting client

    import labelatorio
    client = labelatorio.Client(api_token="your_api_token")

Getting project info

Package requirements are handled using pip. To install them do

# get project by id
existing_project = client.projects.get("2fab1778-e8b1-4327-ac83-16dd0e783ab4")

# if you have just name
existing_project = client.projects.get_by_name("my name")

# or if you don't know the exact name
existing_project = client.projects.search("my name")

Adding, updating documents

df = pd.DataFrame({
        "key":["first","second"], # mandatory
        "text":["this is my first text", "completely different text..."],  # mandatory
        "my_custom_column":["note 1",None] # optional
        "labels":[["ClassA"],None] #optional if you have labels - should be defined in project
    })

ids = client.documents.add_documents(project_id, data=df)

client.documents.set_labels(project_id,ids[1],["ClassB"])

Quering documents

# simple keyword search ... 
found = client.documents.search(keyword="completely different") 

# find all documents where "ClassA" was predicted
found = client.documents.search( predicted_label="ClassA")

# find all documents where "ClassA" was incorrectly predicted
found = client.documents.search( false_positives="ClassA")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labelatorio-0.4.1.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

labelatorio-0.4.1-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file labelatorio-0.4.1.tar.gz.

File metadata

  • Download URL: labelatorio-0.4.1.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.16

File hashes

Hashes for labelatorio-0.4.1.tar.gz
Algorithm Hash digest
SHA256 03d9b533b1b44a1d670fca3ef97b78215002a9444265f9da59f8e283915dc132
MD5 adc47941337a17fb0d1d203b21c5540d
BLAKE2b-256 df5a26f9d6d5516fa706d2a3c1df7574733fb6831cbc6f382fe7f908b686ea8c

See more details on using hashes here.

File details

Details for the file labelatorio-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: labelatorio-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.16

File hashes

Hashes for labelatorio-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1bb136e1529d5be4732339b31df6ff22f6d5c1c4d9e37350dccc8bf1e147a787
MD5 51bdbd0795f2df3f4fe6d62bc39f2c11
BLAKE2b-256 c80423383899cbc6f678d6f2947eccc22522a30d5a7bf3e768160adf1cb90b69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page