Convert labelme annotations into coco format in one step
Project description
labelme2coco
A lightweight package for converting your labelme annotations into COCO object detection format.
Convert LabelMe annotations to COCO format in one step
labelme is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
Getting started
Installation
pip install -U labelme2coco
Basic Usage
labelme2coco path/to/labelme/dir
labelme2coco path/to/labelme/dir --train_split_rate 0.85
labelme2coco path/to/labelme/dir --category_id_start 1
Advanced Usage
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# set category ID start value
category_id_start = 1
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate, category_id_start=category_id_start)
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# set category ID start value
category_id_start = 1
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder, category_id_start=category_id_start)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories, category_id_start=category_id_start)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
labelme2coco-0.2.6.tar.gz
(18.2 kB
view details)
Built Distribution
File details
Details for the file labelme2coco-0.2.6.tar.gz
.
File metadata
- Download URL: labelme2coco-0.2.6.tar.gz
- Upload date:
- Size: 18.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25cb4b33e3de1d65763daa882e2bafc8091e3aa5cbf26fec386fa33941599db1 |
|
MD5 | 16cf010885e1b68e4c5c72badce7038b |
|
BLAKE2b-256 | 9f1d75147adf0981f4be135c6f4c2ffa5cea41b78362a5f38f7ebbd092b05183 |
File details
Details for the file labelme2coco-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: labelme2coco-0.2.6-py3-none-any.whl
- Upload date:
- Size: 19.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c86c1b4bcb2be5ca595af0ad9822445462414943ab9b2a251d29932534d5871 |
|
MD5 | 13d350ab906e3edc1ef2a132297bc94d |
|
BLAKE2b-256 | 898b3366bc652e2bfcb6387280b45da534ef01d4b04f958de84acf4746665fba |