Skip to main content

Convert labelme annotations into coco format in one step

Project description

labelme2coco

downloads pypi version ci fcakyon twitter

A lightweight package for converting your labelme annotations into COCO object detection format.

teaser

Convert LabelMe annotations to COCO format in one step

labelme is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.

You can use this package to convert labelme annotations to COCO format.

Getting started

Installation

pip install -U labelme2coco

Basic Usage

labelme2coco path/to/labelme/dir
labelme2coco path/to/labelme/dir --train_split_rate 0.85
labelme2coco path/to/labelme/dir --category_id_start 1

Advanced Usage

# import package
import labelme2coco

# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"

# set export dir
export_dir = "tests/data/"

# set train split rate
train_split_rate = 0.85

# set category ID start value
category_id_start = 1

# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate, category_id_start=category_id_start)
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json

# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"

# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"

# set path for coco json to be saved
export_dir = "tests/data/"

# set category ID start value
category_id_start = 1

# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder, category_id_start=category_id_start)

# export train coco json
save_json(train_coco.json, export_dir+"train.json")

# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories, category_id_start=category_id_start)

# export val coco json
save_json(val_coco.json, export_dir+"val.json")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labelme2coco-0.2.6.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

labelme2coco-0.2.6-py3-none-any.whl (19.2 kB view details)

Uploaded Python 3

File details

Details for the file labelme2coco-0.2.6.tar.gz.

File metadata

  • Download URL: labelme2coco-0.2.6.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for labelme2coco-0.2.6.tar.gz
Algorithm Hash digest
SHA256 25cb4b33e3de1d65763daa882e2bafc8091e3aa5cbf26fec386fa33941599db1
MD5 16cf010885e1b68e4c5c72badce7038b
BLAKE2b-256 9f1d75147adf0981f4be135c6f4c2ffa5cea41b78362a5f38f7ebbd092b05183

See more details on using hashes here.

File details

Details for the file labelme2coco-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: labelme2coco-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 19.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for labelme2coco-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9c86c1b4bcb2be5ca595af0ad9822445462414943ab9b2a251d29932534d5871
MD5 13d350ab906e3edc1ef2a132297bc94d
BLAKE2b-256 898b3366bc652e2bfcb6387280b45da534ef01d4b04f958de84acf4746665fba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page