Skip to main content

No project description provided

Project description

English | 简体中文

Introduction

LabelU offers a variety of annotation tools and features, supporting image, video, and audio annotation.

  • Image: Multifunctional image processing tools encompassing 2D frames, semantic segmentation, polylines, keypoints, and many other annotation tools, assist in completing image identification, annotation, and analysis.
  • Video: The video annotation has robust video processing capabilities, able to implement video segmentation, video classification, video information extraction, and other functions, providing high-quality annotated data for model training.
  • Audio: Highly efficient and accurate audio analysis tool can achieve audio segmentation, audio classification, audio information extraction, and other functions, making complex sound information visually intuitive.

Features

  • Simplicity: Provides a variety of image annotation tools that can be annotated through simple visual configuration.
  • Flexibility: A variety of tools can be freely combined to meet most image, video, and audio annotation needs.
  • Universality: Supports exporting to various data formats, including JSON, COCO, MASK.

Getting started

Try LabelU online

Local deployment

  1. Install Miniconda, Choose the corresponding operating system type and download it for installation.

Note: If your system is MacOS with an Intel chip, please install Miniconda of intel x86_64

  1. After the installation is complete, run the following command in the terminal (you can choose the default 'y' for prompts during the process):
conda create -n labelu python=3.7

Note: For Windows platform, you can run the above command in Anaconda Prompt.

  1. Activate the environment:
conda activate labelu
  1. Install LabelU:
pip install labelu

To install the test version:pip install --extra-index-url https://test.pypi.org/simple/ labelu==<test revision>

  1. Run LabelU:
labelu
  1. Visit http://localhost:8000/ and ready to go.

Local development

# Download and Install miniconda
# https://docs.conda.io/en/latest/miniconda.html

# Create virtual environment(python = 3.7)
conda create -n labelu python=3.7

# Activate virtual environment
conda activate labelu

# Install peotry
# https://python-poetry.org/docs/#installing-with-the-official-installer

# Install all package dependencies
poetry install

# Start labelu, server: http://localhost:8000
uvicorn labelu.main:app --reload

# Update submodule
git submodule update --remote --merge

Supported Scenarios

Image

  • Label Classification: Can help users quickly classify objects in images and can be used for image retrieval, object detection tasks.
  • Text Description: Text transcription can help users quickly extract text information in images and can be used for text retrieval, machine translation tasks.
  • Bounding Box: Can help users quickly select objects in images and can be used for image recognition, object tracking tasks.
  • Point Annotation: Points can help users accurately label key information in the image and can be used for object recognition, scene analysis tasks.
  • Polygon: Can help users accurately label irregular shapes and can be used for object recognition, scene analysis tasks.
  • Line Annotation: Lines can help users accurately label edges and contours in the image and can be used for object recognition, scene analysis tasks.

Video

  • Label Classification: Classifying and labeling videos can be used for video retrieval, recommendation, and classification tasks.
  • Text Description: Converting speech content in videos into text can be used for voice recognition, transcription, and translation tasks.
  • Segment Segmentation: Extracting specific clips or scenes from the video for annotation is very useful for video object detection, action recognition, and video summary tasks.
  • Timestamps: Point to or mark specific parts of the video; users can click on timestamps to jump directly to that part of the video.

Audio

  • Label Classification: By listening to the audio and selecting the appropriate classification for annotation, it's applicable for audio retrieval, recommendations, and classification tasks.
  • Text Description: Converting speech content in audio into text makes it easier for users to analyze and process text. It's very useful for voice recognition, transcription tasks, and can help users better understand and process voice content.
  • Segment Segmentation: Extracting specific clips from audio for annotation is very useful for audio event detection, voice recognition, and audio editing tasks.
  • Timestamps: Used to point to or mark specific parts of the audio; users can click on timestamps to jump directly to that part of the audio.

Quick start

Annotation format

Communication

Welcome to the OpenDataLab official WeChat group!

Links

  • LabelU-kit (LabelU is developed using LabelU-kit.)

License

This project is released under the Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labelu-0.8.7.tar.gz (2.8 MB view details)

Uploaded Source

Built Distribution

labelu-0.8.7-py3-none-any.whl (2.9 MB view details)

Uploaded Python 3

File details

Details for the file labelu-0.8.7.tar.gz.

File metadata

  • Download URL: labelu-0.8.7.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.7.17 Linux/5.15.0-1051-azure

File hashes

Hashes for labelu-0.8.7.tar.gz
Algorithm Hash digest
SHA256 a4838cddc682979cab9b97038d2eafa002e2598ff20362905dbd32962a1b4856
MD5 49f6091d5edb88e595ab87d56066dd06
BLAKE2b-256 733a4ec23b6c153d87456e1e52ad588cf69525b9c467ac5cbe14cc03139f3653

See more details on using hashes here.

File details

Details for the file labelu-0.8.7-py3-none-any.whl.

File metadata

  • Download URL: labelu-0.8.7-py3-none-any.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.7.17 Linux/5.15.0-1051-azure

File hashes

Hashes for labelu-0.8.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a01d3f62c9bd235fe196dbfed870d92e094c7d3835a11473253697db5ff56705
MD5 77e96c82facd883f1a41d88926302c64
BLAKE2b-256 ade2bfc643b30598893d60e759ea792f6e08eea13f0d2644fedf04da0c32cf2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page