Skip to main content

Adds a new float type with uncertainty

Project description

labfis.py

Travis - CI PyPI License

Description

Small library for uncertainty calculations and error propagation.

Error propagation:

The uncertainty is calculated analytically in accordance with the gaussian propagation aproximation established by the International Bureau of Weights and Measures (BIPM):

To compare two labfloats it is used the following methods:

Assuming:

  • If they are equal they must satisfy:
  • If they are different they must satisfy:

NOTE: Two labfloats can be not different and not equal at the same time by these methods.

Made by and for Physics Laboratory students in IFSC, who can't use uncertainties.py because of mean’s absolute deviation used in its calculation.

Usage

Just import with from labfis import labfloat and create an labfloat object, as this exemple below:

>>> from labfis import labfloat
>>> a = labfloat(1,3)
>>> b = labfloat(2,4)
>>> a*b
(2 ± 7)

Check the Wiki for more details.

Instalation

Intstall main releases with:

pip install labfis

Install development version with:

pip install git+https://github.com/phisgroup/labfis.py@development

References

  1. Kirchner, James. "Data Analysis Toolkit #5: Uncertainty Analysis and Error Propagation" (PDF). Berkeley Seismology Laboratory. University of California. Retrieved 22 April 2016.
  2. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association. 55 (292): 708–713. doi:10.2307/2281592. JSTOR 2281592.
  3. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  4. Ku, H. H. (October 1966). "Notes on the use of propagation of error formulas". Journal of Research of the National Bureau of Standards. 70C (4): 262. doi:10.6028/jres.070c.025. ISSN 0022-4316. Retrieved 3 October 2012.
  5. Clifford, A. A. (1973). Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558.
  6. Lee, S. H.; Chen, W. (2009). "A comparative study of uncertainty propagation methods for black-box-type problems". Structural and Multidisciplinary Optimization. 37 (3): 239–253. doi:10.1007/s00158-008-0234-7.
  7. Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
  8. Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibrations. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
  9. "A Summary of Error Propagation" (PDF). p. 2. Retrieved 2016-04-04.
  10. "Propagation of Uncertainty through Mathematical Operations" (PDF). p. 5. Retrieved 2016-04-04.
  11. "Strategies for Variance Estimation" (PDF). p. 37. Retrieved 2013-01-18.
  12. Harris, Daniel C. (2003), Quantitative chemical analysis(6th ed.), Macmillan, p. 56, ISBN 978-0-7167-4464-1
  13. "Error Propagation tutorial" (PDF). Foothill College. October 9, 2009. Retrieved 2012-03-01.
  14. Helene, O.; Vanin, V.. Tratamento estatístico de dados em física experimental. São Paulo: Editora Edgard Blücher, 1981.
  15. Vuolo, J. E.. Fundamentos da teoria de erros. 2. ed. São Paulo: Editora Edgard Blücher, 1993.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labfis-1.2.1.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

labfis-1.2.1-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file labfis-1.2.1.tar.gz.

File metadata

  • Download URL: labfis-1.2.1.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for labfis-1.2.1.tar.gz
Algorithm Hash digest
SHA256 ac353efb386ba9402a0a53baf35a2b2d010ca4e500c6c4a9391de8a2954cc4ea
MD5 68ab696de0eafda74864227aead1dd2d
BLAKE2b-256 d06b806b3ee51d2146c071d40b8e167e40000789b6df73dab5c63369d82ea257

See more details on using hashes here.

File details

Details for the file labfis-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: labfis-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for labfis-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 522d9eba563439e8c31f0a819a8c7c534d90cc129dba67fae610b7d4ae3707d3
MD5 7b9b8029ff9177fe596e1382eb9d6c69
BLAKE2b-256 fda2779a8029bb3be9ababd25a1a0ae782ffd72b5234e524fff4e0585cb441aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page