Skip to main content

Minimalistic ORM for JSON/YAML/Pickle file based/redis/mongo DB

Project description

https://badge.fury.io/py/labml-db.svg https://pepy.tech/badge/labml-db

LabML DB

LabML DB is a minimalistic ORM database that uses JSON, YAML or Pickle files. It uses Python typehints as much as possible to help with static checking, and IDE features like autocompletion.

You can install this package using PIP.

pip install labml_db

Example

from labml_db import Model, Index


class Project(Model['Project']):
    name: str
    experiments: int

    @classmethod
    def defaults(cls):
        return dict(name='', experiments=0)


class User(Model['User']):
    name: str
    projects: List[Key[Project]]
    # This is an optional property, will automatically default to None
    occupation: Optional[str]

    @classmethod
    def defaults(cls):
        # Name is not in defaults and not optional.
        # It will be considered a required property
        return dict(projects=[])


class UsernameIndex(Index['User']):
    pass

You can configure it to use JSON/YAML/Pickle files

Model.set_db_drivers([
    FileDbDriver(PickleSerializer(), User, Path('./data/user')),
    FileDbDriver(YamlSerializer(), Project, Path('./data/project'))
])
Index.set_db_drivers([
    FileIndexDbDriver(JsonSerializer(), UsernameIndex, Path('./data/UserNameIndex.yaml'))
])

You can user get_all and Key.load to retrieve models, and save to save models.

proj = Project(name='nlp')
user = User(name='John')
user.projects.append(proj.key)
user.occupation = 'test'
user.save()
proj.save()

keys = User.get_all()
print([k.load() for k in keys])
keys = Project.get_all()
print([k.load() for k in keys])

And index is a hash-map between strings and keys.

user_key = UsernameIndex.get('John')
if not user_key:
    user = User(name='John')
    user.save()
    UsernameIndex.set(user.name, user.key)
else:
    print(user_key.load())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labml_db-0.0.15.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

labml_db-0.0.15-py3-none-any.whl (13.3 kB view details)

Uploaded Python 3

File details

Details for the file labml_db-0.0.15.tar.gz.

File metadata

  • Download URL: labml_db-0.0.15.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.15.tar.gz
Algorithm Hash digest
SHA256 89d3a1e26a7171cc21a05b0c97830b91644b63215692312099aa849e89e3a1b9
MD5 463034c0d63f54c0c22434d5d3bfc77b
BLAKE2b-256 b4e767168274c9cb3deb6ece12f5fc5d812e2629f66c9c223f664479723ba488

See more details on using hashes here.

File details

Details for the file labml_db-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: labml_db-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 13.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 672aa0a1aa93f9d4d6be62658b391a06c241e56d410576f997bd7141b7653e91
MD5 d27bffc852bcec701fa7244900cfcbec
BLAKE2b-256 c4a9e6f1a61ceb87ab0740300b88800517f8c870fe0080497b046704b0217acc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page