Skip to main content

Minimalistic ORM for JSON/YAML/Pickle file based DB

Project description

https://badge.fury.io/py/labml_db.svg https://pepy.tech/badge/labml_db

LabML DB

LabML DB is a minimalistic ORM database that uses JSON, YAML or Pickle files. It uses Python typehints as much as possible to help with static checking, and IDE features like autocompletion.

You can install this package using PIP.

pip install labml_db

Example

from labml_db import Model, Index


class Project(Model['Project']):
    name: str
    experiments: int

    @classmethod
    def defaults(cls):
        return dict(name='', experiments=0)


class User(Model['User']):
    name: str
    projects: List[Key[Project]]
    # This is an optional property, will automatically default to None
    occupation: Optional[str]

    @classmethod
    def defaults(cls):
        # Name is not in defaults and not optional.
        # It will be considered a required property
        return dict(projects=[])


class UsernameIndex(Index['User']):
    pass

You can configure it to use JSON/YAML/Pickle files

Model.set_db_drivers([
    FileDbDriver(PickleSerializer(), User, Path('./data/user')),
    FileDbDriver(YamlSerializer(), Project, Path('./data/project'))
])
Index.set_db_drivers([
    FileIndexDbDriver(JsonSerializer(), UsernameIndex, Path('./data/UserNameIndex.yaml'))
])

You can user get_all and Key.load to retrieve models, and save to save models.

proj = Project(name='nlp')
user = User(name='John')
user.projects.append(proj.key)
user.occupation = 'test'
user.save()
proj.save()

keys = User.get_all()
print([k.load() for k in keys])
keys = Project.get_all()
print([k.load() for k in keys])

And index is a hash-map between strings and keys.

user_key = UsernameIndex.get('John')
if not user_key:
    user = User(name='John')
    user.save()
    UsernameIndex.set(user.name, user.key)
else:
    print(user_key.load())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labml_db-0.0.4.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

labml_db-0.0.4-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file labml_db-0.0.4.tar.gz.

File metadata

  • Download URL: labml_db-0.0.4.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.4.tar.gz
Algorithm Hash digest
SHA256 f096e72996e33bd4982d2239620d0a3dff8ac02807150d0b1f9867db503ec099
MD5 7a4e8b6f3e4ccc2ee71af9615a8af526
BLAKE2b-256 a48d0a8535fba268834788a9acd239ec5c95c3fa19c03a922089193212309c24

See more details on using hashes here.

File details

Details for the file labml_db-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: labml_db-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 dbb1b03031854a08965d8971ceb50f80eab00a7640267d0d5beb3f0ad76820d3
MD5 7c29b64e900bac7adaa032ea92305cda
BLAKE2b-256 2ccb525580431adf20a8bbf8060c9f96c51f6ac69d79693b28cd47bd3b315114

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page