Skip to main content

Minimalistic ORM for JSON/YAML/Pickle file based DB

Project description

https://badge.fury.io/py/labml_db.svg https://pepy.tech/badge/labml_db

LabML DB

LabML DB is a minimalistic ORM database that uses JSON, YAML or Pickle files. It uses Python typehints as much as possible to help with static checking, and IDE features like autocompletion.

You can install this package using PIP.

pip install labml_db

Example

from labml_db import Model, Index


class Project(Model['Project']):
    name: str
    experiments: int

    @classmethod
    def defaults(cls):
        return dict(name='', experiments=0)


class User(Model['User']):
    name: str
    projects: List[Key[Project]]
    # This is an optional property, will automatically default to None
    occupation: Optional[str]

    @classmethod
    def defaults(cls):
        # Name is not in defaults and not optional.
        # It will be considered a required property
        return dict(projects=[])


class UsernameIndex(Index['User']):
    pass

You can configure it to use JSON/YAML/Pickle files

Model.set_db_drivers([
    FileDbDriver(PickleSerializer(), User, Path('./data/user')),
    FileDbDriver(YamlSerializer(), Project, Path('./data/project'))
])
Index.set_db_drivers([
    FileIndexDbDriver(JsonSerializer(), UsernameIndex, Path('./data/UserNameIndex.yaml'))
])

You can user get_all and Key.load to retrieve models, and save to save models.

proj = Project(name='nlp')
user = User(name='John')
user.projects.append(proj.key)
user.occupation = 'test'
user.save()
proj.save()

keys = User.get_all()
print([k.load() for k in keys])
keys = Project.get_all()
print([k.load() for k in keys])

And index is a hash-map between strings and keys.

user_key = UsernameIndex.get('John')
if not user_key:
    user = User(name='John')
    user.save()
    UsernameIndex.set(user.name, user.key)
else:
    print(user_key.load())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labml_db-0.0.5.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

labml_db-0.0.5-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file labml_db-0.0.5.tar.gz.

File metadata

  • Download URL: labml_db-0.0.5.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.5.tar.gz
Algorithm Hash digest
SHA256 29ae22e1852a2127041c0760d3b9aed92085a30b69edf1e112b188e0936e6d8d
MD5 c6280c45f74427802957b4c029ea4bcc
BLAKE2b-256 79660f2a4de4af9593cebe4aa7835958fb25261f83a1b5855fc78eddbc62ba5e

See more details on using hashes here.

File details

Details for the file labml_db-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: labml_db-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 220e0dc6d1114bf4008144c3830c2a9bf9e8d951561092a2d6a1f78845a13436
MD5 3c9a2653ae6a721294433dbbb162afcf
BLAKE2b-256 d59e5da72f75707b0022a48510a7e388be0fd4c55b28e1f1c867c046ef9c7ac5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page