Skip to main content

Minimalistic ORM for JSON/YAML/Pickle file based DB

Project description

https://badge.fury.io/py/labml_db.svg https://pepy.tech/badge/labml_db

LabML DB

LabML DB is a minimalistic ORM database that uses JSON, YAML or Pickle files. It uses Python typehints as much as possible to help with static checking, and IDE features like autocompletion.

You can install this package using PIP.

pip install labml_db

Example

from labml_db import Model, Index


class Project(Model['Project']):
    name: str
    experiments: int

    @classmethod
    def defaults(cls):
        return dict(name='', experiments=0)


class User(Model['User']):
    name: str
    projects: List[Key[Project]]
    # This is an optional property, will automatically default to None
    occupation: Optional[str]

    @classmethod
    def defaults(cls):
        # Name is not in defaults and not optional.
        # It will be considered a required property
        return dict(projects=[])


class UsernameIndex(Index['User']):
    pass

You can configure it to use JSON/YAML/Pickle files

Model.set_db_drivers([
    FileDbDriver(PickleSerializer(), User, Path('./data/user')),
    FileDbDriver(YamlSerializer(), Project, Path('./data/project'))
])
Index.set_db_drivers([
    FileIndexDbDriver(JsonSerializer(), UsernameIndex, Path('./data/UserNameIndex.yaml'))
])

You can user get_all and Key.load to retrieve models, and save to save models.

proj = Project(name='nlp')
user = User(name='John')
user.projects.append(proj.key)
user.occupation = 'test'
user.save()
proj.save()

keys = User.get_all()
print([k.load() for k in keys])
keys = Project.get_all()
print([k.load() for k in keys])

And index is a hash-map between strings and keys.

user_key = UsernameIndex.get('John')
if not user_key:
    user = User(name='John')
    user.save()
    UsernameIndex.set(user.name, user.key)
else:
    print(user_key.load())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

labml_db-0.0.7.tar.gz (59.3 kB view details)

Uploaded Source

Built Distribution

labml_db-0.0.7-py3-none-any.whl (92.6 kB view details)

Uploaded Python 3

File details

Details for the file labml_db-0.0.7.tar.gz.

File metadata

  • Download URL: labml_db-0.0.7.tar.gz
  • Upload date:
  • Size: 59.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.7.tar.gz
Algorithm Hash digest
SHA256 7838f8dbfa4af9b1d0e1d8db59752af2c46d895597a9277333183b1dfe4cb98a
MD5 e4764a7af48460cef3308b89f0234084
BLAKE2b-256 36de49f5f9f7705d2768cfb6f8c8e251016a62800ae1052d7b46516ede72e9e3

See more details on using hashes here.

File details

Details for the file labml_db-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: labml_db-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 92.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.5

File hashes

Hashes for labml_db-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 208b384027c38d990319a6b6b9e8f20c4355236e712565367cd0f4cbd76df13f
MD5 3db9edd26b0ec983d1ce73bf589f8711
BLAKE2b-256 e9d6fe15c16fda9f16dc953efc233c9406a2d2002444344c484c8ecc5c776dff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page