🧑🏫 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit), optimizers (adam, radam, adabelief), gans(dcgan, cyclegan, stylegan2), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, diffusion, etc. 🧠
Project description
labml.ai Deep Learning Paper Implementations
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,
The website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.
We are actively maintaining this repo and adding new implementations almost weekly. for updates.
Paper Implementations
✨ Transformers
- Multi-headed attention
- Transformer building blocks
- Transformer XL
- Rotary Positional Embeddings
- Attention with Linear Biases (ALiBi)
- RETRO
- Compressive Transformer
- GPT Architecture
- GLU Variants
- kNN-LM: Generalization through Memorization
- Feedback Transformer
- Switch Transformer
- Fast Weights Transformer
- FNet
- Attention Free Transformer
- Masked Language Model
- MLP-Mixer: An all-MLP Architecture for Vision
- Pay Attention to MLPs (gMLP)
- Vision Transformer (ViT)
- Primer EZ
- Hourglass
✨ Low-Rank Adaptation (LoRA)
✨ Eleuther GPT-NeoX
✨ Diffusion models
- Denoising Diffusion Probabilistic Models (DDPM)
- Denoising Diffusion Implicit Models (DDIM)
- Latent Diffusion Models
- Stable Diffusion
✨ Generative Adversarial Networks
- Original GAN
- GAN with deep convolutional network
- Cycle GAN
- Wasserstein GAN
- Wasserstein GAN with Gradient Penalty
- StyleGAN 2
✨ Recurrent Highway Networks
✨ LSTM
✨ HyperNetworks - HyperLSTM
✨ ResNet
✨ ConvMixer
✨ Capsule Networks
✨ U-Net
✨ Sketch RNN
✨ Graph Neural Networks
✨ Counterfactual Regret Minimization (CFR)
Solving games with incomplete information such as poker with CFR.
✨ Reinforcement Learning
- Proximal Policy Optimization with Generalized Advantage Estimation
- Deep Q Networks with with Dueling Network, Prioritized Replay and Double Q Network.
✨ Optimizers
- Adam
- AMSGrad
- Adam Optimizer with warmup
- Noam Optimizer
- Rectified Adam Optimizer
- AdaBelief Optimizer
- Sophia-G Optimizer
✨ Normalization Layers
- Batch Normalization
- Layer Normalization
- Instance Normalization
- Group Normalization
- Weight Standardization
- Batch-Channel Normalization
- DeepNorm
✨ Distillation
✨ Adaptive Computation
✨ Uncertainty
✨ Activations
✨ Langauge Model Sampling Techniques
✨ Scalable Training/Inference
Installation
pip install labml-nn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for labml_nn-0.4.137-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f03605a939dfe162dbd50de984e6d84c52c9e72c29973594e571f5426b50100 |
|
MD5 | 3fd460d184ca7d171dbe88db8e4cfcfd |
|
BLAKE2b-256 | dd553e8e1415f07cab7ffcab38cece074c9026168721d52bda44c2dc9fec8f35 |