Skip to main content

Zurich Instruments LabOne Q software framework for quantum computing control

Project description

LabOne Q logo

LabOne Q

LabOne Q is Zurich Instrument’s software framework to accelerate progress in quantum computing. Its Python-based, high-level programming interface enables users to concentrate on intuitive, efficient experiment design, while automatically accounting for their instrumentation details and maximizing useful computation time. Tight system integration between software and hardware ensures a seamless user experience from setups with a single qubit to those with 100 and more.

Requirements

⚠️ This software requires Python 3.9 or higher. We assume that pip and python use a corresponding Python version.

💡 To ease the maintenance of multiple installations, we recommended to use Python environments through e.g. venv, pipenv or conda.

Installation

The following commands will make the latest release of LabOne Q available in your current environment.

$ pip install --upgrade laboneq

Documentation

Find the LabOne Q Manual here: https://docs.zhinst.com/labone_q_user_manual/

Dive right into using LabOne Q and generate your first pulse sequence: https://docs.zhinst.com/labone_q_user_manual/getting_started/hello_world/

The API Documentation is published here: https://docs.zhinst.com/labone_q_user_manual/reference/simple/

Architecture

Overview of the LabOne Q Software Stack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

laboneq-2.36.0-cp39-abi3-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9+ Windows x86-64

laboneq-2.36.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

laboneq-2.36.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

laboneq-2.36.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (1.7 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file laboneq-2.36.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: laboneq-2.36.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for laboneq-2.36.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 1466381de871d22143b0d7809b96d5fe12cbe5cc39b35dd5b3aab51bd76d11a5
MD5 50980e3bfe02bdc8253f539281246175
BLAKE2b-256 4e90578d87edfd7cd12cf7c8a87a5d1c1123b6cfde8434959dd908689d72b97d

See more details on using hashes here.

File details

Details for the file laboneq-2.36.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laboneq-2.36.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3a6f6aed9dcd1a1296388a2feadc017b13e8cb2136144498b6a43961a4c1a9e
MD5 2d4c61d58bce49e800db4aeab01ba740
BLAKE2b-256 0d820f7b2fd71faef7f9686cbde49ce956ab64b02f2c0e235fd44265a8749a9b

See more details on using hashes here.

File details

Details for the file laboneq-2.36.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laboneq-2.36.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 788c889ebca1c3c17ede314bb4cb7ac338974671aa2d33c0631aadc3db189d28
MD5 eb8634dbf4c3348bf214e0185b809b62
BLAKE2b-256 7d83c73bb8158ca15ea5b5c641a42a271ddf34c3707b14d0516545bfabff137d

See more details on using hashes here.

File details

Details for the file laboneq-2.36.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for laboneq-2.36.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 147c6ceb5311e99d574a01ea0a2b0b68e86913ab5a210abbcb776ef51e12181d
MD5 05bfedde65dfd1162e0ca93c0b376d7d
BLAKE2b-256 b770d5a72613195ac1215fe5f3b210a2fdc8b4e617024e26c49d79fe9663d736

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page