Skip to main content

Zurich Instruments LabOne Q software framework for quantum computing control

Project description

LabOne Q logo

LabOne Q

LabOne Q is Zurich Instrument’s software framework to accelerate progress in quantum computing. Its Python-based, high-level programming interface enables users to concentrate on intuitive, efficient experiment design, while automatically accounting for their instrumentation details and maximizing useful computation time. Tight system integration between software and hardware ensures a seamless user experience from setups with a single qubit to those with 100 and more.

Requirements

⚠️ This software requires Python 3.9 or higher. We assume that pip and python use a corresponding Python version.

💡 To ease the maintenance of multiple installations, we recommended to use Python environments through e.g. venv, pipenv or conda.

Installation

The following commands will make the latest release of LabOne Q available in your current environment.

$ pip install --upgrade laboneq

Documentation

Find the LabOne Q Manual here: https://docs.zhinst.com/labone_q_user_manual/

Dive right into using LabOne Q and generate your first pulse sequence: https://docs.zhinst.com/labone_q_user_manual/getting_started/hello_world/

The API Documentation is published here: https://docs.zhinst.com/labone_q_user_manual/reference/simple/

Architecture

Overview of the LabOne Q Software Stack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

laboneq-2.40.0-cp39-abi3-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9+ Windows x86-64

laboneq-2.40.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

laboneq-2.40.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

laboneq-2.40.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file laboneq-2.40.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: laboneq-2.40.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for laboneq-2.40.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e5428f05e0e81ab3d4c00e2736bb1f110488541d717d32c656335c365a6291db
MD5 d18fa690c303b0e99c76f5b072d83779
BLAKE2b-256 6d4130edbab5523588a9dc986ba6ea159d581b4ee07f4bac44b0f29fb8154d62

See more details on using hashes here.

File details

Details for the file laboneq-2.40.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laboneq-2.40.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 053b1cde0875278da0009eaf9e38af4034c4c93ac856267e04ff3b28899bf818
MD5 d274668dbae6dc03f978d42d726b88f3
BLAKE2b-256 e831fc9a845e717fff6880807f7563397576208baf5241e81edf820cb4a11924

See more details on using hashes here.

File details

Details for the file laboneq-2.40.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laboneq-2.40.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d40e3178daf2a66305e3ba8c13276c1aaf7be5f50e6002fbe0969c591f627e1
MD5 c7657432fd42520e27fbaa16f421d970
BLAKE2b-256 3b7d769b96aa64c58f646ec59e2fb45b888ff02f8cd389bef3728547369ac289

See more details on using hashes here.

File details

Details for the file laboneq-2.40.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for laboneq-2.40.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 c227b9f94819a541467d01da11bde27ab24bd4d93e78504d469cd8a9edb58069
MD5 7a4ef1448840618fadfb98ce9dee8070
BLAKE2b-256 6c628bbfd3a5b3dfdb60709bd8db328d7e11ce519f72de4d7f00d1e0b64536e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page