Skip to main content

Amplitude analysis made short and sweet

Project description

Amplitude analysis made short and sweet

GitHub Release GitHub last commit GitHub Actions Workflow Status GitHub License Crates.io Version docs.rs Codecov PyPI - Version

laddu (/ˈlʌduː/) is a library for analysis of particle physics data. It is intended to be a simple and efficient alternative to some of the other tools out there. laddu is written in Rust with bindings to Python via PyO3 and maturin and is the spiritual successor to rustitude, one of my first Rust projects. The goal of this project is to allow users to perform complex amplitude analyses (like partial-wave analyses) without complex code or configuration files.

[!CAUTION] This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).

Table of Contents

Key Features

  • A simple interface focused on combining Amplitudes into models which can be evaluated over Datasets.
  • A single Amplitude trait which makes it easy to write new amplitudes and integrate them into the library.
  • Easy interfaces to precompute and cache values before the main calculation to speed up model evaluations.
  • Efficient parallelism using rayon.
  • Python bindings to allow users to write quick, easy-to-read code that just works.

Installation

laddu can be added to a Rust project with cargo:

cargo add laddu

The library's Python bindings are located in a library by the same name, which can be installed simply with your favorite Python package manager:

pip install laddu

Quick Start

Rust

Writing a New Amplitude

While it is probably easier for most users to skip to the Python section, there is currently no way to implement a new amplitude directly from Python. At the time of writing, Rust is not a common language used by particle physics, but this tutorial should hopefully convince the reader that they don't have to know the intricacies of Rust to write performant amplitudes. As an example, here is how one might write a Breit-Wigner, parameterized as follows:

I_{\ell}(m; m_0, \Gamma_0, m_1, m_2) =  \frac{1}{\pi}\frac{m_0 \Gamma_0 B_{\ell}(m, m_1, m_2)}{(m_0^2 - m^2) - \imath m_0 \Gamma}

where

\Gamma = \Gamma_0 \frac{m_0}{m} \frac{q(m, m_1, m_2)}{q(m_0, m_1, m_2)} \left(\frac{B_{\ell}(m, m_1, m_2)}{B_{\ell}(m_0, m_1, m_2)}\right)^2

is the relativistic width correction, $q(m_a, m_b, m_c)$ is the breakup momentum of a particle with mass $m_a$ decaying into two particles with masses $m_b$ and $m_c$, $B_{\ell}(m_a, m_b, m_c)$ is the Blatt-Weisskopf barrier factor for the same decay assuming particle $a$ has angular momentum $\ell$, $m_0$ is the mass of the resonance, $\Gamma_0$ is the nominal width of the resonance, $m_1$ and $m_2$ are the masses of the decay products, and $m$ is the "input" mass.

Although this particular amplitude is already included in laddu, let's assume it isn't and imagine how we would write it from scratch:

use laddu::prelude::*;
use laddu::utils::functions::{blatt_weisskopf, breakup_momentum};

#[derive(Clone)]
pub struct MyBreitWigner {
    name: String,
    mass: ParameterLike,
    width: ParameterLike,
    pid_mass: ParameterID,
    pid_width: ParameterID,
    l: usize,
    daughter_1_mass: Mass,
    daughter_2_mass: Mass,
    resonance_mass: Mass,
}
impl MyBreitWigner {
    pub fn new(
        name: &str,
        mass: ParameterLike,
        width: ParameterLike,
        l: usize,
        daughter_1_mass: &Mass,
        daughter_2_mass: &Mass,
        resonance_mass: &Mass,
    ) -> Box<Self> {
        Self {
            name: name.to_string(),
            mass,
            width,
            pid_mass: ParameterID::default(),
            pid_width: ParameterID::default(),
            l,
            daughter_1_mass: daughter_1_mass.clone(),
            daughter_2_mass: daughter_2_mass.clone(),
            resonance_mass: resonance_mass.clone(),
        }
        .into()
    }
}

impl Amplitude for MyBreitWigner {
    fn register(&mut self, resources: &mut Resources) -> AmplitudeID {
        self.pid_mass = resources.register_parameter(&self.mass);
        self.pid_width = resources.register_parameter(&self.width);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, event: &Event, _cache: &Cache) -> Complex<Float> {
        let mass = self.resonance_mass.value(event);
        let mass0 = parameters.get(self.pid_mass);
        let width0 = parameters.get(self.pid_width);
        let mass1 = self.daughter_1_mass.value(event);
        let mass2 = self.daughter_2_mass.value(event);
        let q0 = breakup_momentum(mass0, mass1, mass2);
        let q = breakup_momentum(mass, mass1, mass2);
        let f0 = blatt_weisskopf(mass0, mass1, mass2, self.l);
        let f = blatt_weisskopf(mass, mass1, mass2, self.l);
        let width = width0 * (mass0 / mass) * (q / q0) * (f / f0).powi(2);
        let n = Float::sqrt(mass0 * width0 / PI);
        let d = Complex::new(mass0.powi(2) - mass.powi(2), -(mass0 * width));
        Complex::from(f * n) / d
    }
}

Calculating a Likelihood

We could then write some code to use this amplitude. For demonstration purposes, let's just calculate an extended unbinned negative log-likelihood, assuming we have some data and Monte Carlo in the proper parquet format:

let ds_data = open("test_data/data.parquet").unwrap();
let ds_mc = open("test_data/mc.parquet").unwrap();

let resonance_mass = Mass::new(&[2, 3]);
let p1_mass = Mass::new(&[2]);
let p2_mass = Mass::new(&[3]);
let mut manager = Manager::default();
let bw = manager.register(MyBreitWigner::new(
    "bw",
    parameter("mass"),
    parameter("width"),
    2,
    &p1_mass,
    &p2_mass,
    &resonance_mass,
));
let mag = manager.register(Scalar::new("mag", parameter("magnitude")));
let model = (mag * bw).norm_sqr();

let nll = NLL::new(&manager, &ds_data, &ds_mc);
println!("Parameters names and order: {:?}", nll.parameters());
let result = nll.evaluate(&[1.27, 0.120, 100.0], &model);
println!("The extended negative log-likelihood is {}", result);

In practice, amplitudes can also be added together, their real and imaginary parts can be taken, and evaluators should mostly take the real part of whatever complex value comes out of the model.

Python

Fitting Data

While we cannot (yet) implement new amplitudes within the Python interface alone, it does contain all the functionality required to analyze data. Here's an example to show some of the syntax. This models includes three partial waves described by the $Z_{\ell}^m$ amplitude listed in Equation (D13) here[^1]. Since we take the squared norm of each individual sum, they are invariant up to a total phase, thus the S-wave was arbitrarily picked to be purely real.

import laddu as ld
import matplotlib.pyplot as plt
import numpy as np
from iminuit import Minuit
from laddu import constant, parameter

def main():
    ds_data = ld.open("path/to/data.parquet")
    ds_mc = ld.open("path/to/accmc.parquet")
    angles = ld.Angles(0, [1], [2], [2, 3], "Helicity")
    polarization = ld.Polarization(0, [1])
    manager = ld.Manager()
    z00p = manager.register(ld.Zlm("z00p", 0, 0, "+", angles, polarization))
    z00n = manager.register(ld.Zlm("z00n", 0, 0, "-", angles, polarization))
    z22p = manager.register(ld.Zlm("z22p", 2, 2, "+", angles, polarization))
    
    s0p = manager.register(ld.Scalar("s0p", parameter("s0p")))
    s0n = manager.register(ld.Scalar("s0n", parameter("s0n")))
    d2p = manager.register(ld.ComplexScalar("d2", parameter("d2 re"), parameter("d2 im")))

    pos_re = (s0p * z00p.real() + d2p * z22p.real()).norm_sqr()
    pos_im = (s0p * z00p.imag() + d2p * z22p.imag()).norm_sqr()
    neg_re = (s0n * z00n.real()).norm_sqr()
    neg_im = (s0n * z00n.imag()).norm_sqr()
    model = pos_re + pos_im + neg_re + neg_im

    nll = ld.NLL(manager, ds_data, ds_mc)

    def cost(*args):
        return nll.evaluate(list(args), model)

    m = Minuit(cost, *[1.0 for _ in nll.parameters])
    m.migrad()
    print(m)
    fit_weights = nll.project(list(m.values), model)
    masses_mc = res_mass.value_on(ds_mc)
    masses_data = res_mass.value_on(ds_data)
    weights_data = ds_data.weights
    plt.hist(masses_data, weights=weights_data, bins=80, range=(1.0, 2.0), label="Data", histtype="step")
    plt.hist(masses_mc, weights=fit_weights, bins=80, range=(1.0, 2.0), label="Fit", histtype="step")
    plt.legend()
    plt.savefig("demo.svg")


if __name__ == "__main__":
    main()

This example would probably make the most sense for a binned fit, since there isn't actually any mass dependence in any of these amplitudes (so it will just plot the relative amount of each wave over the entire dataset).

Data Format

The data format for laddu is a bit different from some of the alternatives like AmpTools. Since ROOT doesn't yet have bindings to Rust and projects to read ROOT files are still largely works in progress (although I hope to use oxyroot in the future when I can figure out a few bugs), the primary interface for data in laddu is Parquet files. These are easily accessible from almost any other language and they don't take up much more space than ROOT files. In the interest of future compatibility with any number of experimental setups, the data format consists of an arbitrary number of columns containing the four-momenta of each particle, the polarization vector of each particle (optional) and a single column for the weight. These columns all have standardized names. For example, the following columns would describe a dataset with four particles, the first of which is a polarized photon beam, as in the GlueX experiment:

Column name Data Type Interpretation
p4_0_E Float32 Beam Energy
p4_0_Px Float32 Beam Momentum (x-component)
p4_0_Py Float32 Beam Momentum (y-component)
p4_0_Pz Float32 Beam Momentum (z-component)
eps_0_Px Float32 Beam Polarization (x-component)
eps_0_Py Float32 Beam Polarization (y-component)
eps_0_Pz Float32 Beam Polarization (z-component)
p4_1_E Float32 Recoil Proton Energy
p4_1_Px Float32 Recoil Proton Momentum (x-component)
p4_1_Py Float32 Recoil Proton Momentum (y-component)
p4_1_Pz Float32 Recoil Proton Momentum (z-component)
p4_2_E Float32 Decay Product 1 Energy
p4_2_Px Float32 Decay Product 1 Momentum (x-component)
p4_2_Py Float32 Decay Product 1 Momentum (y-component)
p4_2_Pz Float32 Decay Product 1 Momentum (z-component)
p4_3_E Float32 Decay Product 2 Energy
p4_3_Px Float32 Decay Product 2 Momentum (x-component)
p4_3_Py Float32 Decay Product 2 Momentum (y-component)
p4_3_Pz Float32 Decay Product 2 Momentum (z-component)
weight Float32 Event Weight

To make it easier to get started, we can directly convert from the AmpTools format using the provided [amptools-to-laddu] script (see the bin directory of this repository). This is not bundled with the Python library (yet) but may be in the future.

Future Plans

  • Introduce Rust-side function minimization. My ganesh was written with this library in mind, and bindings will eventually be included to smooth over the fitting interface.
  • Allow users to build likelihood functions from multiple terms, including non-amplitude terms like LASSO.
  • Create a nice interface for binning datasets along a particular variable and fitting the binned data.
  • MPI and GPU integration (these are incredibly difficult to do right now, but it's something I'm looking into).
  • As always, more tests and documentation.

Alternatives

While this is likely the first Rust project (aside from my previous attempt, rustitude), there are several other amplitude analysis programs out there at time of writing. This library is a rewrite of rustitude which was written when I was just learning Rust and didn't have a firm grasp of a lot of the core concepts that are required to make the analysis pipeline memory- and CPU-efficient. In particular, rustitude worked well, but ate up a ton of memory and did not handle precalculation as nicely.

AmpTools

The main inspiration for this project is the library most of my collaboration uses, AmpTools. AmpTools has several advantages over laddu: it's probably faster for almost every use case, but this is mainly because it is fully integrated with MPI and GPU support. I'm not actually sure if there's a fair benchmark between the two libraries, but I'd wager AmpTools would still win. AmpTools is a much older, more developed project, dating back to 2010. However, it does have its disadvantages. First and foremost, the primary interaction with the library is through configuration files which are not really code and sort of represent a domain specific language. As such, there isn't really a way to check if a particular config will work before running it. Users could technically code up their analyses in C++ as well, but I think this would generally be more work for very little benefit. AmpTools primarily interacts with Minuit, so there aren't simple ways to perform alternative optimization algorithms, and the outputs are a file which must also be parsed by code written by the user. This usually means some boilerplate setup for each analysis, a slew of input and output files, and, since it doesn't ship with any amplitudes, integration with other libraries. The data format is also very rigid, to the point where including beam polarization information feels hacked on (see the Zlm implementation here which requires the event-by-event polarization to be stored in the beam's four-momentum). While there isn't an official Python interface, Lawrence Ng has made some progress porting the code here.

PyPWA

PyPWA is a library written in pure Python. While this might seem like an issue for performance (and it sort of is), the library has several features which encourage the use of JIT compilers. The upside is that analyses can be quickly prototyped and run with very few dependencies, it can even run on GPUs and use multiprocessing. The downside is that recent development has been slow and the actual implementation of common amplitudes is, in my opinion, messy. I don't think that's a reason to not use it, but it does make it difficult for new users to get started.

ComPWA

ComPWA is a newcomer to the field. It's also a pure Python implementation and is comprised of three separate libraries. QRules can be used to validate and generate particle reaction topologies using conservation rules. AmpForm uses SymPy to transform these topologies into mathematical expressions, and it can also simplify the mathematical forms through the built-in CAS of SymPy. Finally, TensorWaves connects AmpForm to various fitting methods. In general, these libraries have tons of neat features, are well-documented, and are really quite nice to use. I would like to eventually see laddu as a companion to ComPWA (rather than direct competition), but I don't really know enough about the libraries to say much more than that.

Others

It could be the case that I am leaving out software with which I am not familiar. If so, I'd love to include it here for reference. I don't think that laddu will ever be the end-all-be-all of amplitude analysis, just an alternative that might improve on existing systems. It is important for physicists to be aware of these alternatives. For example, if you really don't want to learn Rust but need to implement an amplitude which isn't already included here, laddu isn't for you, and one of these alternatives might be best.

[^1]: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX. Physical Review D, 100(5). doi:10.1103/physrevd.100.054017

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laddu-0.1.2.tar.gz (2.2 MB view details)

Uploaded Source

Built Distributions

laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp312-none-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

laddu-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

laddu-0.1.2-cp312-cp312-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

laddu-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

laddu-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

laddu-0.1.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

laddu-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

laddu-0.1.2-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

laddu-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

laddu-0.1.2-cp311-none-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

laddu-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

laddu-0.1.2-cp311-cp311-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

laddu-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

laddu-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

laddu-0.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

laddu-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

laddu-0.1.2-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

laddu-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

laddu-0.1.2-cp310-none-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

laddu-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

laddu-0.1.2-cp310-cp310-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

laddu-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

laddu-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

laddu-0.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

laddu-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

laddu-0.1.2-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

laddu-0.1.2-cp39-none-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

laddu-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

laddu-0.1.2-cp39-cp39-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

laddu-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

laddu-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

laddu-0.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

laddu-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

laddu-0.1.2-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

laddu-0.1.2-cp38-none-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

laddu-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

laddu-0.1.2-cp38-cp38-musllinux_1_2_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

laddu-0.1.2-cp38-cp38-musllinux_1_2_armv7l.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

laddu-0.1.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

laddu-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

laddu-0.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

laddu-0.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

laddu-0.1.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

laddu-0.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file laddu-0.1.2.tar.gz.

File metadata

  • Download URL: laddu-0.1.2.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2.tar.gz
Algorithm Hash digest
SHA256 6a664f5b64dd6de91054ba2d23a35fd2a6a2df035a221f46bf067e105da607d7
MD5 c41d32f9b5bfaf86bd9554a5cc8f6763
BLAKE2b-256 b5d0160e2c532c6d7bb3947b9ced1005fc4e1d30b8f255cfa770eeeb8d39a3ee

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5ff4cdda42552f232e089337b66b05008401a790ea466c86733e4ff57f6f0fe2
MD5 d897b3c88ad729366ca5bee557ce493d
BLAKE2b-256 90666c9496f75d45438efd4abb880af4a45a7554e47dc5c87ded34e7edd8b29f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 36f3f8723a24599009383ceeeb512ee681b2a5fe38058ce9336408d00e4f19fe
MD5 d55fe8cf3cf4377b3dbcff4ef1673af0
BLAKE2b-256 c2d4e1258ce891d3e65c3675f518b5b17425885a818b9c663e5cbe213d5b9424

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 d6ed9bdf9ab22be5daa6b5a010217ac34a19e914b466a29340341e922e3daae0
MD5 d596b3e25b56bdccac1b336ceed75ebd
BLAKE2b-256 b914797741dae3f0721d12f451b848996764b45080cd2d61c82097611c2de61f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ad9467e3b5ba18ab2c5ac61c13305ffcafef30e874b7b1d5071272dc4de92ef6
MD5 6c8910e40e6bec739ee372a332c43243
BLAKE2b-256 95af55ddd05aec47a804b78bba006677e317153f19ad2d4c3d2eec0f89545f49

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d402cfca21bafa946438886f9e79a642462ec82ec05d48695bbe64fff961b4a9
MD5 a143186ab1db86a4da8f42e5ca444857
BLAKE2b-256 bdb9a6151e651da73bf9de6341e56c13da5b930201713bbfad172ae14d7306d2

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4a1f35e0b8af74fc9d00c51ade4289e1193308873bf048958da470cd10c5a4fc
MD5 4383eab34d98be2db392a2b9bc7b2083
BLAKE2b-256 6d8d7485a2edb9ad5b7754b74ba1ddb68488eaf8ac503f93b71f9ddd67088aba

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1f5c9f46ab24bfd1bba3f5c7f43f60bd9a64ae267d7bb6cd7c6209d3990c74ce
MD5 2cc14cdb5ab624a5c711d2f8ab47eaf2
BLAKE2b-256 54cebe83f302d4a59500b7c8bd75c9626edac3730c4b7fb79bd32ab566425dd3

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5beb14e9b3bd6384a9103829291a532dd31ee4ac7cf5a42b0f1df8d81fb17b3e
MD5 ffd813bb4b8b3d21497d5a10b09ce698
BLAKE2b-256 ec34a410f1b883ef2aa62267c58cd5769538faf59d0724553ebfafc3235cc389

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f60ff06e745aaa5f3ada866bd8a6e5dd89a1d7d36c06ef2b64ae7dfbf3c3529
MD5 7ad08cd12ba0c7c8fcef37a713bac0cd
BLAKE2b-256 21227dd7a47458aeda668c16646f1760b84579f7329ba78220e18e0987506ccb

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a864d623f8c5089c22afcf61a089dc3f05477ebdd36042f9d6a8d84c9ae8e367
MD5 cfc1eb9ea291dc1baa3faa4b7d9d8d3c
BLAKE2b-256 f7110ada70eb1a95094ef09421a1a443ee9b53ac012cd7624d5bf9ebb884dc6d

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ce95b23cff06a63b1529ebb8f9f07ed79141acb85e80f46db8b6ab5b4350f20
MD5 41e1229f572bdfce4260851528a5f3fc
BLAKE2b-256 eb1970382d26cb3ef26caff19879fc086dd9f4e4aabd51967894143f21c64afc

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 cbe1882944f58c5a18b98f778beb3133df28a49bc9b9a9ecf8e0f62658c0d1ef
MD5 0686e5c33363c91c901c129cd07b638e
BLAKE2b-256 1e8f80792d4ab5f002ad15e76d563430312df263b0d307feba0efe4663f85247

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0e33304dfbfabbfb2425f5e289d05231a322b360816246999bcea6fb9cf1d9d8
MD5 260f176212b1611754720c1f4527a96d
BLAKE2b-256 206523881c806e009525fdc1220d368109ab928c958599c39982233a64602553

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 aa5b287a4af280f31e61686b12c606683b01f438678975000dcac1e68ae7f7c2
MD5 a3850fded94d70303090ba8c5afab9bd
BLAKE2b-256 580ce37ce31589b7b6a4db240426605173c9684d2dbf8cd8fd7718e57092a079

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21415200498f5268941a7c4c5941b0ca563b0044995c35f04e8e81742e9020ec
MD5 144d921ec16109b544e8a7fe790a8b76
BLAKE2b-256 120778e89cf8b01c40719dfbd2473e3f0da7dd4fbd76be3431b818753fa04655

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3c52f9627ecf315fe68340254e60be068bac1dfec24f61cc07ca0305882a0abf
MD5 eb39f03976c3c659b1d9d13fda4d8d52
BLAKE2b-256 0b43a8376a54188efde0d28c0418f30d0327e922522a774d02d4abab30c6dc26

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 afa15ba7e9c7833ce1a4abd1ba9708a23919db2c71c0c0f3f9ff9872d9df43de
MD5 7defa5f9081445454193abb3896d6cb9
BLAKE2b-256 4be5cf14ffae37ed678dfc9183c6066970f2e96d75f4d5b2e4be9304c19d200b

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 84aae2d1d3db0cb629cf7c8fa14180dff99a0aa7bf631eea1456c2c618adb4f2
MD5 ecc4799854efae38e76f9ccf1df2f199
BLAKE2b-256 a50048602990feddb0a78188804ff615c0846de06b4b1629f9805c5a608e437e

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d446f1e81d754af77d27f7ccb6c1b507824d0bbbbe724e0f7593c65ddb89a29
MD5 fb633f8f87520937684ee65d69007568
BLAKE2b-256 a3e42ed48ad59f2771149623afbcf7b70f877f254c3bc043affd6483bc488a54

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 24a6270c03d39402e27f53febea5348a3251f664501bda90ea6ede61c40015fd
MD5 c9fb632e4eea19606f03156b10504212
BLAKE2b-256 0f37ccec0f2c24123c476949cf8efb6fdaf45c56dedfe738c7272dd6d36a25b8

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7b762c2bc057ca9a5bf21a2f0cae59100aa8bb1e3a0561d250f543cf7b175451
MD5 bd094e3b73cb66c909f22b887c9da115
BLAKE2b-256 4c82f90e302df1cbab4c5f45d28dafdea484a77f0ca380b567cded6760cbfd91

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 04e3d879906afc6b230761cd1c5b23d3e880a501030bd58a95e014040be0aade
MD5 ecc1a6f9b00ec9197098c6277f73a07e
BLAKE2b-256 7051bcffadcf0a12dcd778ad10b968bbcb43e5a01cb2eade0f31015181a169b1

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 19f1fedff679c7b28172816444341a177f438b664afc5bdd8bda1a79272bc1cb
MD5 8c51400e67998833602e3edd9cd11bf7
BLAKE2b-256 f58f836a2096c349a471b83fbf3f522ea3fa030fd0ab5b118d340777971c985c

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e9fdb203d3959a49127820793f8a915f8be5ec0d40fb20ffb5a5441362af218d
MD5 42d26234f78a5a92bcaf3853e5a58472
BLAKE2b-256 3b9fc993994dc6ab6853bfbef7145da896fd96befd548f4132adc7bfe5474d16

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3dfad0e79559fd662501a095132df5104f8195f90b505ec030f3591c7e938474
MD5 6e1b8434b0df8fb1cd72fe7658513c91
BLAKE2b-256 c41c6352e7895cfbd363f91585a79d202bdc6a870981e60643a23fb865083a87

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2447d29a0c4f0a0b7b97bd74f79d4a6f48c6d953f95d31cd84c87bea025591d9
MD5 5ebf28270cae05a78b341422ccb93590
BLAKE2b-256 6fd93249b3c964b0d1ca888d3af298eb1b5d8c61db148ab47930705c05b509b1

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b075b2822cb3cda765ce42217078d51f79846d1b7f675ee00cfba55da10a80df
MD5 26eedcd01bfe25f8a0ecc5f8e3813907
BLAKE2b-256 84a25b4ee8fa53e29370d41299a6c20e348932a9702d7eba0b521dd31b401ba3

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 113c66a021529646531fe89f78b2b2229351a62eafe1c9ae0a505d6c51aa39c6
MD5 84bde0061f0568842ab11545db220fde
BLAKE2b-256 0ffae09ab095b133ed57bb46ffa78950ee50081ba25497d026ffb2616a1d8f32

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.2-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 370ad6aa714846eff9d54d4812066ad5c6b2c873af575eadaef1984435b86906
MD5 2557c7ad8444bb951b845522d6ef4764
BLAKE2b-256 0e5ea10fa71382b94f7408d61fc32ed1c64eaed0dc00c2cf91888afff6f372b1

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4a5418d943788d46fc4c8b32af6a22567e77c875afefe3567aa723e0dc3443bf
MD5 a09ee399a5e878ca1801e058865d1a0b
BLAKE2b-256 4b3568131ed3a8f9db08f96a47eb9287027f24619205889363157806cfd78361

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fd22e2f772080c4c580f3451d99b7e58a88be85492d29e31a0ff81e4f2c36bea
MD5 60d055939d6e94f0890c05ac332cd366
BLAKE2b-256 f106b40f981e027350a6e4a41630bf75abd7a0486110762831e985108269cfd8

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1fb3e26fd0f0b601763ae15263dfa4877d5d09b1e05a53b9be9cd753f4f98f35
MD5 1fc7342eb596b7decefff1c879605b1a
BLAKE2b-256 d24d7222ce116dd1be446cd847b618628db35888f881bb7deab2f0b33596a4ab

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3633996de1f4cbc5c7b5fbc6cba1634c122aa94d8b8eba4f309a7c4776949fe4
MD5 486f3d8b7605c59661f5b1be521d25cf
BLAKE2b-256 64c4846b44a4227c3c516f4445381c3410f65682b39ec158a2a54a0a5eda8cd4

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5da6ce0e61e6dd3b20c651b83f2391491c96069ceaa4c36277043c62aa0d67b8
MD5 34b45066a85570c31ae7d176f5fb0550
BLAKE2b-256 93052ccb53febb10a689b13daef615c3942600a4b53f8876da3a230f5b4c98e9

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3e13d2108ea2313840a1c91e6068332f23f766615db177597db9fb55e1b80725
MD5 7ddf2b9500da37bfb4e4fbebe458952a
BLAKE2b-256 c345cf0639a98c1678c73818bcb3d3386f659483ee4c7c3263889ca3e011945a

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e253b1d7953d151bd1ee2c06c0605cf89ca04e32ad7c72ac1ff5ad13f7fffe48
MD5 17a73e7cf6fe577dca0b02c01972e72c
BLAKE2b-256 ca885479660e5761460c8496f0452fc1120be7493afb41ae350720a82a615fcc

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b802833b6c6e3daebd870b13bda251648be374660c34687f0263e39b49d1922b
MD5 0a7fba12a20f5260a841100ca941727b
BLAKE2b-256 d735f418b1806f4904d6725fa1090c5e996ea07aecf196e46dcd0db5ccd6bf7e

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a24f95d7093881b27a6b42a93a7e5e42ba9ba54d359f0990e52dd87f1290b8d0
MD5 64976e6f0bee11d83805515a78372852
BLAKE2b-256 1e2ddd4ffe4eeb2d6fbd3952955dd8decd3239fe04a3bf6d90588efb24af1747

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a44037c96c4631259ffc52fc0083cef72727d1371274cf57a8ebd28415dd2b2a
MD5 9095c1c479a70f1cb005bef746520a9e
BLAKE2b-256 53347ffd135caf20077d3481831a5ef946307eea0b7ef2935ef1d6ee6984ce58

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d6bd416f512ece98dcc743ec6d81d82e59dd40aa745260e6ad2d0b124b135d9
MD5 c2fb7d12982cc9b6827f8492a65be0ec
BLAKE2b-256 01d2c8bbc36f3ba1630417b6c5db50d38f3747d14847179a2b3d3de32963aef0

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ca0db095e1a32b9884ca8dbdc549d4238ad5a5028950e809f24963372c7a8e2c
MD5 6f63989cb4148554062241f2d4f32db7
BLAKE2b-256 ec808ef58f0d3e09230c4741643e425b17b655493988e128ddcfa49b0f0c009d

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.2-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 5edb72f9a68ddd33cad31097f3ebd0865d8746bff2fe45e30256c307bf66919a
MD5 d283ecbea65dee2d37bd88ac1ddc66ba
BLAKE2b-256 5361776df1c3ca8168ea3ac80596b9680c5fab96d9e9a2ff1bcf77301bdf37b5

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 72257a7f8092c3004f5fa462556fcdfb93ee4144b02b48ecfc62bd053e6eb7b4
MD5 8ad5d6f7790614cf81bfa978c34726ea
BLAKE2b-256 6700d4fe6f130ddd60dc1fcdbcc04703807a72db3d656c41b18078be522bb30d

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5ccce783966d2ed62fd9604117d7d7d6dbe7afe927cbd98ccd3bdfffe27d70fd
MD5 1c1d50d607d3a8dd3cd80758d970055e
BLAKE2b-256 2ad1482336b29a0938576e0e4fdcd5d365add2d2596650deb7ae3232f65f3f49

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 dc19ad6020c7beb90721aae617abf16a45ca35aba3a7f1079082a5352e35d448
MD5 19f23a2ace1d4620f9b1e3e2a143bb2c
BLAKE2b-256 c1b6de066a7761da9ce66e0b9de0c4904b9c5e09a6d930b39dd34b097d15d4cc

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8ab5c05c2526961b528b493057dc1ebf8caa1798f896620e107c2e10ab48d708
MD5 cd28fa0c367f57e41b45dbd227b6b8e1
BLAKE2b-256 9884f47ef7c46ccc851e69cfd1253fce5b95a439d89187267d61aba937928af8

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20bd94d68ddd9fa761c4d8ad76e79fd54239480f9a3aaa5c32d94753c8042621
MD5 7a7eb64869fbed877baf6010a0a424ff
BLAKE2b-256 56f406e54cbb7629b800203703bf2a6fbe434719aa6dddc8efb801ab512f0249

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 326b5370ad1fbf80114369d76e5c16ebe7c155894e7a4d063f470be6aa3ad41d
MD5 a67d64e7b80136c5eec69b9240d88550
BLAKE2b-256 dea211df9a5640170f2f0adfc0cd4f180712caa550a75227b2e3c3104949a67a

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 58ee15c75ed3849b5cf575c876e266142dae8a2238003e06251f01aae81fd0a3
MD5 2035dd68d3e097d9a8bcd33cfdd7ec53
BLAKE2b-256 c099c17477a05781a96e95732ea776a0a549a40194161367474f35dd0ef7b82c

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 43d71efb039f558967953fd402a0d861b92e8f46603ed29fe8a57abe9be93aca
MD5 d87a07401a5709975224c530bb6fd64c
BLAKE2b-256 dc8c22f9977cf80f48c8111c06ab1c9a1a81b63c210c92d89856bd99f465ad3b

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e47827d965d312364a617363b7cdffe828a146e5e41e5f399f7b0a8570faece
MD5 86d8073d378a8fd7d14183ae6ef5407b
BLAKE2b-256 a977d5e516af896cab949364288640cea547b311d373f8c7174b6c738d21aa18

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7370555be96ea5c778f1c299af715d33354ea1667c949a39069e1f9c6d0cb5e1
MD5 74f29af7c2065b1ac7846bcaa5c0b71f
BLAKE2b-256 51618a3ff94581bb1e7f60a4fb97ebe16a4c623d232923d19106e2b4735411e2

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bbedab6891bc7ce17a52601da7094d520635b05f24b7f400cc1828720d915c8e
MD5 0fe563188de7cd77fe01e8484e76de2b
BLAKE2b-256 1c7f453bb8a4a083f21350e811cf94a5b98da5db26299bb2b6d0f12b217b876d

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ac8db9acd60633137d3e80cc711b44433b3a822b154137fe84eba3ea6e8cce4f
MD5 442f5430ce4a6578989d04386e7173c3
BLAKE2b-256 3f70147f352e60ade4b4005c35a6fc2aec512d98d1cd16e9132c8589988919b3

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.2-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 c33bfdd8e861857fd799252c0c7c0c70668106e614ac869fd25948328248c594
MD5 127cd78a42fd89856b56173fc76f5577
BLAKE2b-256 019c55e7cda497317198a6124a97c95675b2314a80a882db0d8b3e4ab7cce4fc

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d8774b8cba89a0f497802b723e12bcd9843e1cd18da3a530f37a048d8f0073eb
MD5 38861b511c05e7b069bf10935b2900a5
BLAKE2b-256 097d748c36b07679ce9e454fe2b4f7bb2666262344e72dcf1db6be6dc304597d

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 44bee326a9512c80463936334f2f6e2aa648eec3b3cf1e210a5aeae751122135
MD5 8f9c60b41865bce0e78fb544d1804fb2
BLAKE2b-256 8f5a1303919f8b59f3c06ebbb231d72e6cc33ad972836e6e8943294eae2d2a33

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 84dc258c87f8cbeae4947c8a2b9cd23dd5bbb5fadc780baa2ada6eea9a2ccd5c
MD5 868ac545fedf730976f77b6dc95f2172
BLAKE2b-256 9d5d22ed61b035b2540115c522329a5e76f9ffc6a8519e5d01be1d38d82606eb

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 abad05c1361fc022f686316eee101179b6b7b6ea233997b23e8499bb2cdeb7a7
MD5 49bbdb56d9070115b3abf1e367f02d4f
BLAKE2b-256 aa563e6da825a42cc22fa54b28837da56403815d38cf7a663ff301cf1f2f4e23

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a8568074ccb0fdfc1e48331fc7280135de07aa2c8b4744fe641304fac2e8099
MD5 bc095bbbf7ee732d0cc01721d4c01295
BLAKE2b-256 10465b688b32c0e52bf0a0c84db639e0b62821469cb028cf7f7edd785dc8692e

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d767a9bca176e6e350a49a07a88205952b394e653cb6f41e79047b567fcf84a7
MD5 d185dcd69aedb5dc533b8b1d25c80e52
BLAKE2b-256 81310473497103b3b9b563fb23a4bd38838cfeb1e94432682e261828193f023f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 793415a29e03472870eb31dc244d954c03e85eed9806df3320d963a268d690bf
MD5 8d52588b9d1dacad9dcc5fc2a3febd14
BLAKE2b-256 7e2ff9fb4aa2e1250a16d7a34a0da483493a78f968742ada0154141ca5a81c8f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 83b0a6351b257bdd54d85ebc8581b920c133e47c9308aab87878f29c0641374c
MD5 81bbacc30eda2aa8065dcd6b36b28e6f
BLAKE2b-256 b3e114a9f8ea2f7f238203119873a7a6a5d9c4251557b4275264527be97275fd

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9125d38056c3f7aaea04df8ab3fe8895675b012359d832da5e5fca9638ebcb8e
MD5 1ef872982ac7a583109f65899281a5b1
BLAKE2b-256 c80ae1cdb80cacf32218a8bce1b9fa271a63a9b64383029399bd4f2258899eae

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c4f979734040d97af161d9f1306b005cf3875c3d74422223bed5890b4fba1d6a
MD5 cbf926d55635b09f58394c4ebacdece8
BLAKE2b-256 6f30b3d9a0721a4de339fd4dd72220b87a51c3c1a9f9837f5276b10c05857620

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dab48aa01e78751fa5a9372b4ccc65c4796648500e4a02ad5e1babbcbac2bc0a
MD5 8c03fc9425f487038c0e757b2c658f47
BLAKE2b-256 d0cd090be34412588275e1edbe8a846b94ce6ff1c7918d1e56f1719b7f32147a

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 da31dbc6c45d03965b5e01eb0f0d07703a5bc70555a1883a4b68a83ca4e651ef
MD5 f6a057834733e5ee10d331592623bec2
BLAKE2b-256 3c2175abb64015d25cd2ca2cf29517fd4a430c00c7717136860f23ac8ef30960

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d4c2e9ab1cea2e1a7704c8ca94694f2bdc501cadc2024d3392fff01b65c1f95f
MD5 428d210c1ed3e73ba6499dc252f12150
BLAKE2b-256 2035a71073c28d6c5cead4ac1914bd46bfc192b9232e3e3e14daa93a2f048932

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 57e2b8e54e2e1bbf148c58b005ea6eb475f5fbb8d0e3c9d928a3f66542b4600d
MD5 a40d4a51b222ba4e701ee3e181977578
BLAKE2b-256 d198a486a5341b88a3c9155f68fbbff844a0d215ee983874bd189d710f57a684

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 fb365f8fd41cc5156d31f84c11a4a335f9f5f121eb755d591212148718596c5d
MD5 730a3c56b5bbf57cad7764769fcce149
BLAKE2b-256 e9138d33b1a38ed5f79f0e8c8d783d60960a19f645df3bc435db1ba369eb633e

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 76b90efb79b8c88b65eb660d4e37ddd27a4ca61971b690ed943a37e746bb0cdd
MD5 9f92adf42f764b980ca3a199a87f6f86
BLAKE2b-256 750297ba306f2d545d3fa92abfdc4b6790703b57f2f61b3ec897353e20547952

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 676e6382bcebe54cd3d9a4c099373ac9b1f69f82bf619b55c912de05fe5c3bbe
MD5 6b732aa257901af5d73e1da9263d1ee6
BLAKE2b-256 71a40f44abef2d092b10cb5bc00d7801357ef45b7764b05e07c668ee6248844f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2e8f348b0a4844b81912204ec0410e1bac51bb2b3324ef7ee40d90a082aea476
MD5 f7fdc4a0d61ceca680a3cbdf954ab224
BLAKE2b-256 9e8c5b3a6b7aef4d9f61d004c6d21848e26a08f58e4facbe7b852aeaf0c64522

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c519e05e53fab5eeb2de03b28bf79380a002e735b7ffaed75220ce4e65b55598
MD5 c7dfc8ce45e91c627d04a0ba926dde28
BLAKE2b-256 72d88e8054b75d7194848dff601e00c6f4060fe4c83074fb3361be6ccd8ea4ee

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e035432486693bff0db6b88675ca4ebd5da0f5845eeab428dc972f263e2cb709
MD5 d01c13226a562e2a1138fd9af0cc2ecd
BLAKE2b-256 f4d790c1a7ddf70738e45b7582466fb534786ac6878b2faaf39bb9426973c933

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd9a32716ba64a433b4f2ffa1833229ac16f0c943e2e01c1eb3956ca38d01c74
MD5 bfbd53f48d3e22f1e434362f81ec1d12
BLAKE2b-256 0bb25050b3c40fd26e6647faa139d451ee7bca658ad89a63177b102fefe8a0b3

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 241aad042a14f798890744debad9638a330f0044e02860d5f696eccd78ddd34b
MD5 2e9a22b7aa91a9fb6e7d6f9a18f71707
BLAKE2b-256 c44769e5ce4b30905f61200bef0c752c5aea1325375e40f94b26f4659ff5e8d7

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e267a6278f8f72aab960d2146926dee44f150be5ad215ea49954b126a6fc7b3
MD5 7c132d6b9cda7ed4a1686766519e68eb
BLAKE2b-256 7ae3bd205cb357efe7a33dd1ce2d4cb729017ec98880ae5892789640bb858b79

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 891ad6d9f846948fff0c92405249a154bb288951d76c127153d8e124febd2735
MD5 964bf5d468f02bc49c59df61502aecc6
BLAKE2b-256 70f240fae1186643867f0fdbc0c2f355a8db38c417f0843804389e70474ec74b

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 216b9260ff4ae83242daead000e9ecb17dc9c2701589a122f69a84a1db04123a
MD5 dfd6ee1df828bd6459c9ce88974c26c7
BLAKE2b-256 bf704cc860ee7931fe021e410b00e7421e2136710fc8010cef82b1000f3ff787

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 983012d7cc362b85c2ea658cf1155f6463c95972d5d5eea58f2ea917cdf594dc
MD5 e61d003ee3132210f39bae1ffd699070
BLAKE2b-256 11b15f730ef941a5731e014080754793920947ab81cc648e735a84eb2e9cba4f

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 9e6765e2ccd24e75ef836336e2610b2d95503bcd0928fcf9697beb4e49814e23
MD5 deb388bb917656fcb7fd87c74d6a2592
BLAKE2b-256 0147ed984dab05447bdf3cd48378b21710c26f25c6d84d320ecb1bb12082c4fd

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1205f546da488101584651c84fb75470c51e735728751269ad1f74533b9b3761
MD5 91dc4adf4ac72ade9c522e495f8b19b4
BLAKE2b-256 1e43ed5978e0766cd2a3c774d5a13266838302d5d24738b66e2e2dc3b641957a

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50778a51a389e68754a03476d45f9b2f1888a42a5fe5291d1eab037b419cdde3
MD5 7585544e5718433fd525558106fafbbe
BLAKE2b-256 68938fa949b203541caf282f64f4531ec0fcc9bbefd1b65a857cb317d0b7fc61

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7684dff78db2fa38e345f9d9e03a9931c63b2091877219a1aabe04c2b112e110
MD5 d1bc398caa3182d3124626f51859cbc5
BLAKE2b-256 f7eacf606efda8284966e1b79f191f93a2797d951715b7754d945d9deffe3db1

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 da15351abb1d2ff3a9e2beabcf238d972fa9df792f0ce75cf74a635e7897b701
MD5 905aaaf6f554f582055c80637624c6e5
BLAKE2b-256 ec2373d4cdaa9c892fa4938c8396d66439f875defc3513a8d78ac3328fd874b4

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 999edc8c3d25f0b133d3a32dd64455108330de559a7fe06f5b2fd5696090bd0e
MD5 305f60f0ac7efcd9dfe278b63dd54ed9
BLAKE2b-256 b473064703c995b9b27c358cf6e3d5ac87b3bf50dba140399f1181b161c3c6f3

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa8357b45dcbe19445d27162433c9b41e2922dc223a577ead6020355c252bdf0
MD5 7177cf2cdf403fa877d63755c0173fa9
BLAKE2b-256 875f60a6f43bc17dfd5cba1f2de069c8151191270e274ef28eab25feb2c713aa

See more details on using hashes here.

File details

Details for the file laddu-0.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 092dda5db5d4d6fe1f2a7275e928c1036e2c5ad1d04f1b81594143389fb5df27
MD5 655b35aca00858d9fa4591b0335b1947
BLAKE2b-256 d74318004ad825454d038d31d582b9cc836b2ad6d136f2142e75dc8a2a5d467e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page