Skip to main content

Amplitude analysis made short and sweet

Project description

Amplitude analysis made short and sweet

GitHub Release GitHub last commit GitHub Actions Workflow Status GitHub License Crates.io Version docs.rs Codecov PyPI - Version

laddu (/ˈlʌduː/) is a library for analysis of particle physics data. It is intended to be a simple and efficient alternative to some of the other tools out there. laddu is written in Rust with bindings to Python via PyO3 and maturin and is the spiritual successor to rustitude, one of my first Rust projects. The goal of this project is to allow users to perform complex amplitude analyses (like partial-wave analyses) without complex code or configuration files.

[!CAUTION] This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).

Table of Contents

Key Features

  • A simple interface focused on combining Amplitudes into models which can be evaluated over Datasets.
  • A single Amplitude trait which makes it easy to write new amplitudes and integrate them into the library.
  • Easy interfaces to precompute and cache values before the main calculation to speed up model evaluations.
  • Efficient parallelism using rayon.
  • Python bindings to allow users to write quick, easy-to-read code that just works.

Installation

laddu can be added to a Rust project with cargo:

cargo add laddu

The library's Python bindings are located in a library by the same name, which can be installed simply with your favorite Python package manager:

pip install laddu

Quick Start

Rust

Writing a New Amplitude

While it is probably easier for most users to skip to the Python section, there is currently no way to implement a new amplitude directly from Python. At the time of writing, Rust is not a common language used by particle physics, but this tutorial should hopefully convince the reader that they don't have to know the intricacies of Rust to write performant amplitudes. As an example, here is how one might write a Breit-Wigner, parameterized as follows:

I_{\ell}(m; m_0, \Gamma_0, m_1, m_2) =  \frac{1}{\pi}\frac{m_0 \Gamma_0 B_{\ell}(m, m_1, m_2)}{(m_0^2 - m^2) - \imath m_0 \Gamma}

where

\Gamma = \Gamma_0 \frac{m_0}{m} \frac{q(m, m_1, m_2)}{q(m_0, m_1, m_2)} \left(\frac{B_{\ell}(m, m_1, m_2)}{B_{\ell}(m_0, m_1, m_2)}\right)^2

is the relativistic width correction, $q(m_a, m_b, m_c)$ is the breakup momentum of a particle with mass $m_a$ decaying into two particles with masses $m_b$ and $m_c$, $B_{\ell}(m_a, m_b, m_c)$ is the Blatt-Weisskopf barrier factor for the same decay assuming particle $a$ has angular momentum $\ell$, $m_0$ is the mass of the resonance, $\Gamma_0$ is the nominal width of the resonance, $m_1$ and $m_2$ are the masses of the decay products, and $m$ is the "input" mass.

Although this particular amplitude is already included in laddu, let's assume it isn't and imagine how we would write it from scratch:

use laddu::prelude::*;
use laddu::utils::functions::{blatt_weisskopf, breakup_momentum};

#[derive(Clone)]
pub struct MyBreitWigner {
    name: String,
    mass: ParameterLike,
    width: ParameterLike,
    pid_mass: ParameterID,
    pid_width: ParameterID,
    l: usize,
    daughter_1_mass: Mass,
    daughter_2_mass: Mass,
    resonance_mass: Mass,
}
impl MyBreitWigner {
    pub fn new(
        name: &str,
        mass: ParameterLike,
        width: ParameterLike,
        l: usize,
        daughter_1_mass: &Mass,
        daughter_2_mass: &Mass,
        resonance_mass: &Mass,
    ) -> Box<Self> {
        Self {
            name: name.to_string(),
            mass,
            width,
            pid_mass: ParameterID::default(),
            pid_width: ParameterID::default(),
            l,
            daughter_1_mass: daughter_1_mass.clone(),
            daughter_2_mass: daughter_2_mass.clone(),
            resonance_mass: resonance_mass.clone(),
        }
        .into()
    }
}

impl Amplitude for MyBreitWigner {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_mass = resources.register_parameter(&self.mass);
        self.pid_width = resources.register_parameter(&self.width);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, event: &Event, _cache: &Cache) -> Complex<Float> {
        let mass = self.resonance_mass.value(event);
        let mass0 = parameters.get(self.pid_mass);
        let width0 = parameters.get(self.pid_width);
        let mass1 = self.daughter_1_mass.value(event);
        let mass2 = self.daughter_2_mass.value(event);
        let q0 = breakup_momentum(mass0, mass1, mass2);
        let q = breakup_momentum(mass, mass1, mass2);
        let f0 = blatt_weisskopf(mass0, mass1, mass2, self.l);
        let f = blatt_weisskopf(mass, mass1, mass2, self.l);
        let width = width0 * (mass0 / mass) * (q / q0) * (f / f0).powi(2);
        let n = Float::sqrt(mass0 * width0 / PI);
        let d = Complex::new(mass0.powi(2) - mass.powi(2), -(mass0 * width));
        Complex::from(f * n) / d
    }
}

Calculating a Likelihood

We could then write some code to use this amplitude. For demonstration purposes, let's just calculate an extended unbinned negative log-likelihood, assuming we have some data and Monte Carlo in the proper parquet format:

let ds_data = open("test_data/data.parquet").unwrap();
let ds_mc = open("test_data/mc.parquet").unwrap();

let resonance_mass = Mass::new([2, 3]);
let p1_mass = Mass::new([2]);
let p2_mass = Mass::new([3]);
let mut manager = Manager::default();
let bw = manager.register(MyBreitWigner::new(
    "bw",
    parameter("mass"),
    parameter("width"),
    2,
    &p1_mass,
    &p2_mass,
    &resonance_mass,
)).unwrap();
let mag = manager.register(Scalar::new("mag", parameter("magnitude"))).unwrap();
let model = (mag * bw).norm_sqr();

let nll = NLL::new(&manager, &ds_data, &ds_mc);
println!("Parameters names and order: {:?}", nll.parameters());
let result = nll.evaluate(&[1.27, 0.120, 100.0], &model);
println!("The extended negative log-likelihood is {}", result);

In practice, amplitudes can also be added together, their real and imaginary parts can be taken, and evaluators should mostly take the real part of whatever complex value comes out of the model.

Python

Fitting Data

While we cannot (yet) implement new amplitudes within the Python interface alone, it does contain all the functionality required to analyze data. Here's an example to show some of the syntax. This models includes three partial waves described by the $Z_{\ell}^m$ amplitude listed in Equation (D13) here[^1]. Since we take the squared norm of each individual sum, they are invariant up to a total phase, thus the S-wave was arbitrarily picked to be purely real.

import laddu as ld
import matplotlib.pyplot as plt
import numpy as np
from laddu import constant, parameter

def main():
    ds_data = ld.open("path/to/data.parquet")
    ds_mc = ld.open("path/to/accmc.parquet")
    angles = ld.Angles(0, [1], [2], [2, 3], "Helicity")
    polarization = ld.Polarization(0, [1])
    manager = ld.Manager()
    z00p = manager.register(ld.Zlm("z00p", 0, 0, "+", angles, polarization))
    z00n = manager.register(ld.Zlm("z00n", 0, 0, "-", angles, polarization))
    z22p = manager.register(ld.Zlm("z22p", 2, 2, "+", angles, polarization))
    
    s0p = manager.register(ld.Scalar("s0p", parameter("s0p")))
    s0n = manager.register(ld.Scalar("s0n", parameter("s0n")))
    d2p = manager.register(ld.ComplexScalar("d2", parameter("d2 re"), parameter("d2 im")))

    pos_re = (s0p * z00p.real() + d2p * z22p.real()).norm_sqr()
    pos_im = (s0p * z00p.imag() + d2p * z22p.imag()).norm_sqr()
    neg_re = (s0n * z00n.real()).norm_sqr()
    neg_im = (s0n * z00n.imag()).norm_sqr()
    model = pos_re + pos_im + neg_re + neg_im

    nll = ld.NLL(manager, ds_data, ds_mc)
    status = nll.minimize(model, [1.0] * len(nll.parameters))
    print(status)
    fit_weights = nll.project(status.x, model)
    masses_mc = res_mass.value_on(ds_mc)
    masses_data = res_mass.value_on(ds_data)
    weights_data = ds_data.weights
    plt.hist(masses_data, weights=weights_data, bins=80, range=(1.0, 2.0), label="Data", histtype="step")
    plt.hist(masses_mc, weights=fit_weights, bins=80, range=(1.0, 2.0), label="Fit", histtype="step")
    plt.legend()
    plt.savefig("demo.svg")


if __name__ == "__main__":
    main()

This example would probably make the most sense for a binned fit, since there isn't actually any mass dependence in any of these amplitudes (so it will just plot the relative amount of each wave over the entire dataset).

Data Format

The data format for laddu is a bit different from some of the alternatives like AmpTools. Since ROOT doesn't yet have bindings to Rust and projects to read ROOT files are still largely works in progress (although I hope to use oxyroot in the future when I can figure out a few bugs), the primary interface for data in laddu is Parquet files. These are easily accessible from almost any other language and they don't take up much more space than ROOT files. In the interest of future compatibility with any number of experimental setups, the data format consists of an arbitrary number of columns containing the four-momenta of each particle, the polarization vector of each particle (optional) and a single column for the weight. These columns all have standardized names. For example, the following columns would describe a dataset with four particles, the first of which is a polarized photon beam, as in the GlueX experiment:

Column name Data Type Interpretation
p4_0_E Float32 Beam Energy
p4_0_Px Float32 Beam Momentum (x-component)
p4_0_Py Float32 Beam Momentum (y-component)
p4_0_Pz Float32 Beam Momentum (z-component)
eps_0_Px Float32 Beam Polarization (x-component)
eps_0_Py Float32 Beam Polarization (y-component)
eps_0_Pz Float32 Beam Polarization (z-component)
p4_1_E Float32 Recoil Proton Energy
p4_1_Px Float32 Recoil Proton Momentum (x-component)
p4_1_Py Float32 Recoil Proton Momentum (y-component)
p4_1_Pz Float32 Recoil Proton Momentum (z-component)
p4_2_E Float32 Decay Product 1 Energy
p4_2_Px Float32 Decay Product 1 Momentum (x-component)
p4_2_Py Float32 Decay Product 1 Momentum (y-component)
p4_2_Pz Float32 Decay Product 1 Momentum (z-component)
p4_3_E Float32 Decay Product 2 Energy
p4_3_Px Float32 Decay Product 2 Momentum (x-component)
p4_3_Py Float32 Decay Product 2 Momentum (y-component)
p4_3_Pz Float32 Decay Product 2 Momentum (z-component)
weight Float32 Event Weight

To make it easier to get started, we can directly convert from the AmpTools format using the provided [amptools-to-laddu] script (see the bin directory of this repository). This is not bundled with the Python library (yet) but may be in the future.

Future Plans

  • Introduce Rust-side function minimization. My ganesh was written with this library in mind, and bindings will eventually be included to smooth over the fitting interface.
  • Allow users to build likelihood functions from multiple terms, including non-amplitude terms like LASSO.
  • Create a nice interface for binning datasets along a particular variable and fitting the binned data.
  • MPI and GPU integration (these are incredibly difficult to do right now, but it's something I'm looking into).
  • As always, more tests and documentation.

Alternatives

While this is likely the first Rust project (aside from my previous attempt, rustitude), there are several other amplitude analysis programs out there at time of writing. This library is a rewrite of rustitude which was written when I was just learning Rust and didn't have a firm grasp of a lot of the core concepts that are required to make the analysis pipeline memory- and CPU-efficient. In particular, rustitude worked well, but ate up a ton of memory and did not handle precalculation as nicely.

AmpTools

The main inspiration for this project is the library most of my collaboration uses, AmpTools. AmpTools has several advantages over laddu: it's probably faster for almost every use case, but this is mainly because it is fully integrated with MPI and GPU support. I'm not actually sure if there's a fair benchmark between the two libraries, but I'd wager AmpTools would still win. AmpTools is a much older, more developed project, dating back to 2010. However, it does have its disadvantages. First and foremost, the primary interaction with the library is through configuration files which are not really code and sort of represent a domain specific language. As such, there isn't really a way to check if a particular config will work before running it. Users could technically code up their analyses in C++ as well, but I think this would generally be more work for very little benefit. AmpTools primarily interacts with Minuit, so there aren't simple ways to perform alternative optimization algorithms, and the outputs are a file which must also be parsed by code written by the user. This usually means some boilerplate setup for each analysis, a slew of input and output files, and, since it doesn't ship with any amplitudes, integration with other libraries. The data format is also very rigid, to the point where including beam polarization information feels hacked on (see the Zlm implementation here which requires the event-by-event polarization to be stored in the beam's four-momentum). While there isn't an official Python interface, Lawrence Ng has made some progress porting the code here.

PyPWA

PyPWA is a library written in pure Python. While this might seem like an issue for performance (and it sort of is), the library has several features which encourage the use of JIT compilers. The upside is that analyses can be quickly prototyped and run with very few dependencies, it can even run on GPUs and use multiprocessing. The downside is that recent development has been slow and the actual implementation of common amplitudes is, in my opinion, messy. I don't think that's a reason to not use it, but it does make it difficult for new users to get started.

ComPWA

ComPWA is a newcomer to the field. It's also a pure Python implementation and is comprised of three separate libraries. QRules can be used to validate and generate particle reaction topologies using conservation rules. AmpForm uses SymPy to transform these topologies into mathematical expressions, and it can also simplify the mathematical forms through the built-in CAS of SymPy. Finally, TensorWaves connects AmpForm to various fitting methods. In general, these libraries have tons of neat features, are well-documented, and are really quite nice to use. I would like to eventually see laddu as a companion to ComPWA (rather than direct competition), but I don't really know enough about the libraries to say much more than that.

Others

It could be the case that I am leaving out software with which I am not familiar. If so, I'd love to include it here for reference. I don't think that laddu will ever be the end-all-be-all of amplitude analysis, just an alternative that might improve on existing systems. It is important for physicists to be aware of these alternatives. For example, if you really don't want to learn Rust but need to implement an amplitude which isn't already included here, laddu isn't for you, and one of these alternatives might be best.

[^1]: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX. Physical Review D, 100(5). doi:10.1103/physrevd.100.054017

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laddu-0.1.3.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp312-none-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

laddu-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

laddu-0.1.3-cp312-cp312-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

laddu-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

laddu-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

laddu-0.1.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

laddu-0.1.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

laddu-0.1.3-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

laddu-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

laddu-0.1.3-cp311-none-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

laddu-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

laddu-0.1.3-cp311-cp311-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

laddu-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

laddu-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

laddu-0.1.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

laddu-0.1.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

laddu-0.1.3-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

laddu-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

laddu-0.1.3-cp310-none-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

laddu-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

laddu-0.1.3-cp310-cp310-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

laddu-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

laddu-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

laddu-0.1.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

laddu-0.1.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

laddu-0.1.3-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

laddu-0.1.3-cp39-none-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

laddu-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

laddu-0.1.3-cp39-cp39-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

laddu-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

laddu-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

laddu-0.1.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

laddu-0.1.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

laddu-0.1.3-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

laddu-0.1.3-cp38-none-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

laddu-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

laddu-0.1.3-cp38-cp38-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

laddu-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

laddu-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

laddu-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

laddu-0.1.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

laddu-0.1.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

laddu-0.1.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

laddu-0.1.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

File details

Details for the file laddu-0.1.3.tar.gz.

File metadata

  • Download URL: laddu-0.1.3.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3.tar.gz
Algorithm Hash digest
SHA256 93ef3f554938611d8b00cdb1641a8dcbd809d11253b3d884adfe9f00973b6637
MD5 9fa8eb173e99f4c94e9746b46f27101c
BLAKE2b-256 561e19a14c7321f123b1da7c333dde5cee1e5f2822eb994e45a0c8e9820dbc0c

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b34131bd27e26f4018d3436e2fab7a37c747d5cff409c144fb9b7c3ef633cd99
MD5 931df07fd3d3c3b9f3de1bc2986dcc85
BLAKE2b-256 a8c881fb7a9fce2a3bb09e00e14666488d9c2a2438f88c4314768bc31f742dfb

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bdb4c8737360503ee7dcc6416ceeba71a3e704fb8d0514bcc2ab00f1f033e7de
MD5 e2511d213cd1b81ef4c9c6217e71192c
BLAKE2b-256 36cfd3288541d51f404e49aea4c5c0c9766c939dce979adf920d29876e57a7a4

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 837a8cfe6c4e7f8ef2a482b479d14b5df8a1f6acf4bb30261936e3bb9e3d44c2
MD5 e4277bdd9641b426d8d6f28e2e56bd93
BLAKE2b-256 e06e2f7ea47e9525407c9720b9df0e18688cecdcbe953cd2577a6153742c0ab2

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fc0cd0035b32cedf74a608a3f7abd461b06313630d558402bff9fb49209ebcfd
MD5 356cefd20159a5edcec8684295be7799
BLAKE2b-256 d0ef303ef4c5adb5ac356e676ed699cc5328cb7a248b562d870b9e856cbbb281

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b196b8de3ba223e1b8a2302781d191752406272fb896f778beeece73082901e2
MD5 851d729a297216cbdb147c094356d69c
BLAKE2b-256 7db2f0279a50af40eb0a9611ebe2e9ea81519ce936ae8be63f0f4d9d8d018608

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0aebbc66a252b130f71186e9401e034e42b54f0f01721d5a2943b46c849a1d6b
MD5 e1695cc516b7fc39defff0e2c467add6
BLAKE2b-256 fa5ae70e13272fd8e7600cfaf43364263a3f25a8f98bb7dd98438e98997db60f

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dcaf4efd485222134ebb352f6190a7bc205402ae503b0c9a607790535a7756b4
MD5 750bdb70f7e638b600112a3d29866dad
BLAKE2b-256 1b6815363e21ed8db9ca7165ab7dd0309a6cde0c92e50b3b0d683a9166d8d223

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f72f53e39fb7e86c0a745857737c59d8504e24f3d5d096902145954d4c9e4e74
MD5 c06c675e5f8a8e2f26f9a58b098d3bed
BLAKE2b-256 6f328543e14580f95b4d53ac30fc519ff64b9ddf2e7f4fe1a22394d92116d754

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 110997bd526596b191f740e26d7b94b2c9d9fb116c03ae7871b088475c7b3e81
MD5 bf933dfc31895ac3f48a89ed5815ebdb
BLAKE2b-256 f2ec0d3801eca58b667bd4d8f3418b2a585a806784e7691182a201be2e75c3ed

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 76d02bb2cf2646f0009adbf505e6c54a411797506ebf7e67aa0fa48ad275e555
MD5 194d1711f1cf8a5180441780222a3838
BLAKE2b-256 84ff9a6fa6f0ece8a0bbba979ab3621b554ccb7ebb1cc9c8df74c26b6626d4c7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f18d2339b63bed165627eb48aa6770721631b20460dba9af8e15f9ca56aad5f2
MD5 ab21da1f4849c6c075f474db6ec3efbd
BLAKE2b-256 bbf036cf06ff02ed6e4dc92cd01115a905e9e6915aa2129761bc897a83050432

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5f0bb61dc813e848fce78aaeb9aa0dcf43690df9ed80363e06d4d2126e1ad0d8
MD5 fc37a55fab6ef3a8cb77eb516a6957f4
BLAKE2b-256 0a01e538cd7369ecacb7355dc4293ff02ede515822294181346b3b21caca4331

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1ebc05792f37246c4aea5ccf20f4bbc990df237addd1483c4ef67d35a463eefd
MD5 2993235d03fe29fbd5245fb328710211
BLAKE2b-256 a313f44f684f14e81f9e26bf45d86c616c75c9e67e135eef0ba56f5ed86c5781

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a37b7ef79c9ba2f102b1a02de251f806fc70f6b6a5d24b1cb06f50d7faae67e0
MD5 f7573d0889646cd6ff92c6c12e9e2a16
BLAKE2b-256 e654bc8e7a7cf467d9b93dd35f70c762aa9cedf6bbcfa41595e75f946559defb

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 443d660c77b1df086e48a6b25de766a29e1d4c2289befcf389b640a7ef6068f1
MD5 a6979ca0c70326fc6ab5f5add04c46bc
BLAKE2b-256 5f5952425f49299cd0c88c82ee20b8e2256b7d09b83209e0bb99a154dc6b1d61

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fd209194685619ae0b30e903a8ee2f537c8b28ff9369b98595a9209a90ca2aff
MD5 ae99bba09a2f7bfeeca6d9c2f04ec22f
BLAKE2b-256 71516dfb324a508fd0c89e1b30e162ac44f5fb20b00388019ccbadf7fdcb57fb

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6d8b7c40aa122a58c714fdd63b92c34a6017a5aec3d8c2bff1acc3340ee467e5
MD5 d74f0a52082164df81c447dcb97ce65a
BLAKE2b-256 5298a94f448c8d77b8780321112bdd8ee9a5743f9acd5b5b8c496ea3bec132ec

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0ab400f2368d096555df4ea51c20e60654104b10a179e4a86b168624a876f6c5
MD5 98d32fade59963a26a46a7be026b0f57
BLAKE2b-256 102c53f44210513d1275880d403b39035c57150f7731c6dac97a26a1eba1fc8a

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b446878f342396b2ded26f87851f122eb213a6f32d3a793edfbb1d1eb338a14a
MD5 df9e67a4828b974bb0a4fb1bd9560f21
BLAKE2b-256 19d43ff392ab49dfcd56b3e8397351f7a752ea7fa2a814b5f530c89902f9fcaf

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d318bdcd832bdef505c0d32076c0dfe2824b19052693c9b8f0bb03efdd9054e9
MD5 d3785525958baa8acca87571daec8031
BLAKE2b-256 bf893df96ab23e9bf3c6385d4ea4bc507a9901ebaa3c75bdfda35eb64a147248

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5d1fba31ab55c46348c192a1842293b3efa59de0e8aeeedcfff50f4bc9096217
MD5 62a04eaec9c4fa838b4c69cc6592445a
BLAKE2b-256 8aa861bb56913b2c0faeb5d22b11b5a2ddcaa55155e87ba4c497557e8603cb33

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 227d73401ee04a3eb471d9001334c283446b1ca7b1f05d3e126c46fc67439db5
MD5 7bb61f30527136bd72b708bb25e9a6c5
BLAKE2b-256 df394697b5a298f462c5c03d59299ec03dbd6a04276da1459496ea33876713bd

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 bf8726b99759dde82a719810b3899786751fbf514b100f3883e35e415845b9ad
MD5 009f2bd193943d76a39fdfd991b3f73a
BLAKE2b-256 c87df48c91b894e97ad0bb8bf78157c974148b321f4cfe85f9e25268ad849db3

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0d2249d741d0a9ba972493808f9531db45299dc9b5becf0468dfb5b1c054b7ec
MD5 d0604318d057ceca53b7807f7cbc39de
BLAKE2b-256 6a3f575bdf34716405d4412edc3958c40482f9ae9d3fd6448af9013c1b99ccdd

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 584d0bb3319ecbe2c5cf53be700dc98d1850fec85b5110b8064b6057bc2a16d0
MD5 08621755fb682ad73f3268ad7febe112
BLAKE2b-256 4d27d4795a617dc73c8996d1c7968847dd40ca774569818e1b82e8c196932951

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ed9ada7eda8e5625907c1dd0e2b1cb9d46be58eaa678aae20610b9d8c614d2e8
MD5 91a937b948f53608ce3f0a40c76d58c7
BLAKE2b-256 b5f65e79be33ba84d948178c4b497e0d794f4adf504842fdb66091346003c0bf

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 046383d1147ceef93ca49a326ff1530e7b29d4ad40b44bf89c46105bee246614
MD5 d936832b3baada5c537277421189f36c
BLAKE2b-256 dbe2a9daaf698ca257ef02dca7fb7064aa602ae8afb38aacffc64e3dad252370

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4213a9464cff4269139b53dbec31006d1ac94008bee21adbd47d13ff3aa3f521
MD5 aafd50dc1b396201c3f04788f50a3e83
BLAKE2b-256 be0b8269059083a40109795a442482e83f334a377477ad2eb074dbe11e6fea9e

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.3-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 90d85fbe8ba9f921fe2d396eecc490682840e1294c8aac5542252d736d9bfb9b
MD5 033595ca573754330ae4aa4965a2d120
BLAKE2b-256 f4f10e1bccaebf856f67caab80f82671d103da1f1c36e381bf4e7eaab22bca66

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1aba88efc6506916614b91efa8d6cd4cefc3736c685f6020f0a25071a862132f
MD5 27bc92dcadb3bc6312409e918560ad02
BLAKE2b-256 e460114bff9339fe401060d2930dcfaa13c15f61f9bd6cfa24088b9b7dd9ed14

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 cd4a4aeb70af8a03075f7c5f6982fc5f2cb2ea4e7841c559840b03b414e56558
MD5 85949e9dd55e1df5905722a071cfa2db
BLAKE2b-256 a650d285b9a9b93606e44582c19ba4b5f1bd5cc5997fddd14226fe661c9f8aa3

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 b2597d3afdca31fe323dbc2226db6a2a297042d28f160f305ce9fdb282164e79
MD5 bb0cb489c26cdfd9780638f648a3e9da
BLAKE2b-256 475896447f1d327e2f0bc5429f84b7e83450b61c7b782faed7776bb610698b7f

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 248589843764eada64653d5c2f54b045b54aed4952bff1e3b417055f4fb6604b
MD5 13828a0c85a8ee6a688e392fd15fea70
BLAKE2b-256 b6a5d64d889a45c292a3883cae0313a51023e2b15db7053ef080ce0e69d20ca6

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3f7ecb210f787f59408f0cf1fc2c1173226582d27aee475848f2b780349af94
MD5 5e889f8917c34a3835a0e4d8c6330b62
BLAKE2b-256 a1dcd60328cf98a9a3ee151d80c0b5c4080b1345b525e81402226ea28d4779fe

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5c79edb67a72cd9850d2a7613d53c962c6d80e136824cff5a45ad61830a7a590
MD5 143e7d5743e9d606adb0d55b3f1c7a9c
BLAKE2b-256 cfdbe945759f00e0f8f88ed03ae43ec75746cf9e39318e619a36adb5c2682e24

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1314ee60c4047d3760a848ea65820f2426d30a02c5eff0c1b81fb573ed5d81f2
MD5 8e1ad262adea1991d82bc942a88dee1d
BLAKE2b-256 c2156c6fbff550e60faa3d49e4f3625ef6ad26fcd23a7ad1b24c575dbfeca1e7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 d04c16e6fe3d174a34685735e35496da6409fb25bc756a0bd593957616000ccf
MD5 d5d2ca8d70e5d56544133994896a23f6
BLAKE2b-256 e960291f754b88b5fdf2fe3393d1dae8f9d806954d8f22f9b006539ce6fc2866

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 63dd77ba6b0c8dca7365f9552f9d6232a264eaa8f8bf01a5771515f9010d22cd
MD5 c1758b0ddf993795d7c51ed8208c32e4
BLAKE2b-256 ccdecb9b661e5f4af11a9b8b6a8d9d0f48bbbb3c458d96dbf6cfdfe497fda659

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0dc198f4148b186a23bf8073a7b22d3da48c1c8e52802e1d837f286901bbe4fe
MD5 49fb516fe13361d8b9ff43a87800d63b
BLAKE2b-256 90431ca764b03c96dc3cc01763d0cd0269b39121ee9a4ea5718b3765ff5de3dd

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79f7e81c2101f4c318faebe6e6d317249e720df1d0e3e056e9e6f32d1a9f4160
MD5 e82a70a75fca1ff69d74e06d30bd5d7b
BLAKE2b-256 94d8c56d8288e501d6bcaa6d4aed31c19347c2b9423cc636c92b3331ba996799

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d9e3b79f13ec160121a9c4f76f07535686dffd875507ec3181e310422f651a1a
MD5 1806cca27cb7ae925dbaf4eeeab577fe
BLAKE2b-256 0b9309f1e4bfe5fd43ca2aa6c12b1ab7690e7a072a8be6026320ea33a1675fbb

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ae722efcd2c71eb181a790c328bbd185854d60ab8212d4bc825ced2721790b86
MD5 a22c8239d40cb36723ce0327c5930681
BLAKE2b-256 1ae277461a3ffe42bd5ad467171883dea63465b032ffac46d49b00d4d68ed76b

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1b250a88b54b32ac75fd596a3ca8ad4bb3bfabd3473c801c5efdcd5fc79bca91
MD5 6b87779106d215ef1d3052a1aa47be33
BLAKE2b-256 aed2d9b8c8dcb33eaf523b629370ba40b5a04ac7e01d84db7a4a1c5a0e6e3839

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0bd84002e8cd2191dc873936d9f366f8e371e53eb80ab464c339a931b563bbae
MD5 2e34973ecc42d456470962e240c2bdc6
BLAKE2b-256 dc88397bb0be47af35713e2a820f85d322d1a950026d95e218ad629f36989f3f

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 5957f129537ea8b9a18209831e0c99a20858cfc1c9372fb7cdbec15e7fed319e
MD5 2284bad579a035d108016a79a8eef9c1
BLAKE2b-256 b2d6060107926699069942168fbdd92570d3a4fbe3e126195bce8b66a94c56ac

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8b54f03f68704ee1d80dc48c09581b0f3d4dbbe17bd2cd0027bc291bbd5b79dc
MD5 bba3aadcbf7a63b5d287430dab5db3d1
BLAKE2b-256 b974a06a6b5c8b54b7c4c52f64b6490305e658e192bce48067c08ea9dd0567d8

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64ade871fc9796c1281bf769d0a755c63f37004195575f20781f4c395648e366
MD5 5979815a9050679358fc8c6fb8d08c9f
BLAKE2b-256 44e48f2e4a88dbdfe0a52727cc3d35b3d833a10f955dec851b528e8edce3531b

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6b4d0509e396c71f178a767d37c0ffe2bce1de04df9c2e3d0c3cb02dec469759
MD5 c3677aeef4a6e22da00f4d14e5b06fd4
BLAKE2b-256 a62bb220afc3fc95f6ac7233d131388e2b5b46d4b5e105e84fc06499c71e60fc

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bc30903ae139499ae12c3b9f51460e9b1d9a2ef98912efcb7f2d2443a637405b
MD5 b9e8a2f719fbcb7d7527ba63b86d4378
BLAKE2b-256 1f67a605ff72c4fa51537404049ca81950f49a054937986cee5a277abceb76b3

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9720d6db5597866b672516c9f3e182e00897348e1609f7f8b930e2c12be50884
MD5 cf7fc7f319d139f13e71adc51886640f
BLAKE2b-256 8153eaab1a304103a1b17afb5799e6782076c28ca95d07c1ae6613ee2cdf0b40

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b645bfb7362111cedd2eb0cafddcb5e71d822826c08f463620b83bccd6e3d915
MD5 b4f50d523e5a7ac66b06c1c1c05395a9
BLAKE2b-256 7372e165bf4a1d954f383db35a23a824c74c0c709647931de5a313dfc2751517

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2252a9948a0c773fe0c6facb3eb359c88cd2ba7a053466b767a214cee640e690
MD5 760a824235f84938e5c87692cb5e4250
BLAKE2b-256 572cd73e82819db0ddc82ab1c7dc5026024d6244554ea90c50418ae006295da6

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfedc620fc8d44aac74f5d4b6723abefad381e38ffa11baa3dc32ab82d675776
MD5 2cf6264ee23d58115fddccf614902aa4
BLAKE2b-256 993867cb3c0794a47f867e347a71a38e3b4c77e4be4ea4f5b57f2e5ea1a470fc

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d666dfe623ae6d5733742e894776df871ad69fdf275c94d1fbf3fb613064168b
MD5 08c64a9b94d3fe115b35068c01094118
BLAKE2b-256 5a4b27088b7448aa8a8fef23b5768655e3fd1d5a1351f4d19017afb99051e2ec

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 8378f056afef2d1803b47211a2d9a41b9548a716020fc39574bd224b0f3dcff0
MD5 f07fe3d786ae26ee06b95e6d376352b0
BLAKE2b-256 829753bc7ae6dcf61338938e6eebec7ed0e691485739d6a65f27ea2f50089c9c

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 916c90bd23427c965e0260581a985fd45c91e8fe32b3f0bf7b5cb1aa8eafe602
MD5 f8c4d2a6655bcc92d981f38e517dbb15
BLAKE2b-256 8dc61be06f3e5e5d0eb529f2e745d05333e6edcc6b491dc64808e77636be7bf1

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 cabf754df2c3c7e9c1d665f38392bb57e52182345f8f36d1113b63fcc84e7319
MD5 d703f0108fe9f6d10b674e9a70c0f9ae
BLAKE2b-256 69120645a7637218738cd392e478327d1ae52f875bf2fb1f094e4b8dbb63d8db

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f1a665dbde92fea6233629db469535c52cb1754b2f3a505bd53b32aae5d271c0
MD5 d175c1d8b5ef7b93c80e115ab341c581
BLAKE2b-256 645497a7f5a8b4eac0d9d4be47d1864304445ce3334e2c9f863d36708f9d54c9

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 518922bec4858f43b7dc4e9f044c065ab6b3f10b56af8d0d7dd58e720016f6f7
MD5 0fe802e9e3077f816306eea57a011596
BLAKE2b-256 0ed307ccc719dddae165e6cd19fee7753fd325e53f79649a064f84ca12d4744f

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59e84370f2ed5ac2fed6dac1cb3d165f7d704cd20a010a12066bf1552c93dcc9
MD5 6e2707151008ee46d1108b73c57c114a
BLAKE2b-256 09674361805aa4fc3a7c271b0a70add44cd32ced40e368ff1a0d7487e8a44c8e

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cef44057ee03a13dfa02338f4b89f716f1c2955206e48fe5acddc68132e4c180
MD5 24c2103de3d9a7f13e55b25fe595c937
BLAKE2b-256 c5b435521484c4ef19d57cf62953f88a4c946cc09cd7dd8f34cfff5634a89bb9

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 33f54829e78fbd4184f902e05724fbed0240cab9c2efdf074281af180b0a918c
MD5 57bd296ee694be4c73065fbce39c4195
BLAKE2b-256 c0d4e7d4ec5b644bffa66fe8ba779c030f594afcee5614033fa65acc051e6241

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 4176b7d8adc41fc727eae2917227560daa44f7b41ad87a9f66dcf6996acb3f01
MD5 f4d37122ae7938606e46d16e36c02765
BLAKE2b-256 1a042e6cc67df042c894cb77d07e913ca2d8aa1e9f9773d5454406fcd273011d

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb31d24773792be39e3fe0b0618d30fdddbe3b15d7160bca3506cc1e060a7743
MD5 43d5a3f53544c7f9e8ac3c2a3938d022
BLAKE2b-256 90a29bf0a78f3b2abec39803c2c2299723ab6b03d39282def11ebd7a036e655d

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fbdef530796dd67a876d644c5e32f83a79faa99c127318b2dff17a674676a26f
MD5 0131f55a972dcb0bc1e31b8c76457368
BLAKE2b-256 e7be29353d1de18216ed7aff500de3a1ccf15876197aba365520019b5353564c

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68b9f50a61ab12685e4fada4f6512b80efcfc379048b99e2e1b51170fdab3529
MD5 f1108da069c1094c031e07cc45095fab
BLAKE2b-256 51d6f6af3a9c06c665dc6fcff4414c28d790b3dfa216416f947479276fa6441b

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 f487f7503e23c84bc8a1fe4aad541716abbcae95af0a17e082014d57884c9438
MD5 8d1327298ddc9c601a30b52e565d96ed
BLAKE2b-256 bce78f3b95dc58ebafd6df84733a1978217668aaf8a9af055ad34c130f194f18

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5747e73712198cdac2876ad197114cb34503c48336531a76342fe555e3118b87
MD5 7ca23ab7a8f903ede4ce7696d3415362
BLAKE2b-256 a1cade975c56d1bef91ba09f332ba3c981e3fea85dd2bf6af8de04b89c05a6e2

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5ceba14c047ddf14fd72260552782a9187861ea4e509cdcc86c307a0a1e74eef
MD5 2142f49a06966146bb566240a4533a6d
BLAKE2b-256 18187e2c101c38e75164a8c9bb503c13368b14e182d16f998a53459901fe3e5c

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 5f3c267b6d5f1cbf1caed03174ea094b0a311b6a4129689fd5a2b618c6df867d
MD5 6e7ac7f24e41fe240f704aac85136f18
BLAKE2b-256 6e08df94a46332dab1bbd5b0063e65e8eee0bff948856a14e57417560cc46e8c

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9da98f41bdf6fe5ed4e496b11a24d69f837f0bee9d6da525279bcd2e29bcb645
MD5 7bd0b90a1515d407786c611832e34544
BLAKE2b-256 638f27e352a06c5c64067392d94f55bc8882cc48e1029e4f85b6cc3ecfa0c7d7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 828bb60e50d782e1102ed261c41234b6f1ed2d0b112a65ce877ed84a4b0b6c98
MD5 43582239ce6f85cbd3ba4385ee062f72
BLAKE2b-256 40ee83b9e03fb5b0f99c50b14109d9575eda6287b3bd8ca47b7281e54fd9a402

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2a62b168fc8ac6a0fc452f6043fcc084916a37d9d17a68e87e7d05135e6dd130
MD5 ee7a11ba5d07bad8a31ea79f214c0787
BLAKE2b-256 d58c5772aef24245d6a1adfaae2d195b304c877d9e74fadb45381516dc836fe9

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 44fee4798430e87e0206f11fd4ae2de4d596e9d860c009b7627bd7ffb1d3ac70
MD5 f64225ba4c0552c4c64180f2a570b70a
BLAKE2b-256 6c260061bf9b2c3f70940efd88c95c54a84de837697a1d79ff573168aec0e4a9

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ebf0c61090b970bf25d8a328aac75df23c6473a0158ff2b129997bcce75241cf
MD5 9226e05141cea8b8679af51e9f25bb4a
BLAKE2b-256 b0373760a5024cdd4382ea9e744657e8af328371857a76e20ede06bb36ba9468

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52b19f4d81db19557f79116334d2fede73a73210fe9d8cc27ef4d22937bfb754
MD5 c8e2a324bc342f9b9f776bb724cda24d
BLAKE2b-256 df319a3ff3150f334e139d1b74dc4499ea5866fe6b73c1623e256ac7c0c9c852

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 27cf9301a2432c2fcd108c21131e0e08015c422273b680189068a384eb581c2b
MD5 c09a1a749f9818aa1b90aec875c88e9a
BLAKE2b-256 bbd95e95967aa0ed4464e884e56185c8e3d50d7518f8a809ca68ad6dfa6ebdbb

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc24225b3d04bb40f08a0b67ceb6ae13733d5fd2fb94ee1c521dab7304d3a802
MD5 90de7eaf793458daf8e45b7f486c0faa
BLAKE2b-256 5c9897b124eb9f52c2226475c41e9a7d07bbb44485049434785ae04b5927f229

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 93a5f9ec59bef895c1285bcdf8335599747e347f43889fd100780ee7fd001dbe
MD5 46a2e8d2f164094b71ae459383006bfc
BLAKE2b-256 54447fbbf8ffdfc4100edfe23bf6a357acf12c9bb9b9db53230cece10d4089e8

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d5be94752ee1bcde6ee7c811ff8e93aba16c1af200d842305199e7c4f79b9c01
MD5 22315fe1f17df3d38e0311c938ae960f
BLAKE2b-256 002a6ff668d20f7c3791218511198c5e81dcbaadf78f7b4e41e68d8eaae910e5

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a802d701c5ae34b4c81fc10e867ec58d011480e3f9d2069b4551bbf03ca0fb9d
MD5 391df4a4300d309c0f3f70c078c19bb8
BLAKE2b-256 4aaff446ed816d3fa2da30e5057310a13f0c672395b8e0e04146c1994abe2af7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 eae93e830b2cf7e8c2f1ed11ec886412f44ba340d095d9a8803634ba5c43df3b
MD5 07d91de7cdb1882fc06ec6a7d8b365d3
BLAKE2b-256 fa20a3e2413c6429874feb4c5607dd290eba934cb7b3c2e4786d5f112fee4eec

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9e7c4e8ee17e73dcec32748fbfa8d274ca3de9bd34d39a00f1883b9c2211868d
MD5 640f6e8bc8a76e1db2ad947e3a60b4c5
BLAKE2b-256 51ef38060fd2e6c479dbf302022e91bef45021c8c91457f0366ff4314263aca7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 999724e3e396f3c894339308f5909022af51733252b6c1efcb989c0cb1c065ee
MD5 9c09f38d39ffd4a683ded046e20bf5b5
BLAKE2b-256 5202667d12322951d8464208dd890c4ab50cec5787b6c38899144758d97bd3a6

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d12e94ea6e9d849c65dd2dc83af264f5b3a235f4f7c325b820aeb7d85aa87682
MD5 1137a6ac169ca0175e820a37c2d53af4
BLAKE2b-256 c94804796c1740e3320724f403becdb849d2875094ec110eb50cc71676f13d61

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 290119e41f52887f5ea0c51b08ca6fe6d14c2e9d26cd400934b38b633ebb8fa6
MD5 dcb92f0e169b7d5e4a8f5ee3700f2037
BLAKE2b-256 ce130fe10d87c8760365d804bb1fe52d80e009f322b39038be11c8750c27e3a7

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 27e8daa18b2f1bcc111d57da6b45197caf7c678902c9b2fe159c6de8adb5f1f9
MD5 bf8625cccda9481610688a25432e5f81
BLAKE2b-256 6d0e7777b1203cb32e5ac0592446cba4ad890238d59cd6ddef3020e022555595

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bccf9e0b4973d952bd475a8c0e1a0b6f625f5ae9facd9ec63ea6a1069238c2b
MD5 5dcc91931c6f6b5fd6e3dd172a9461af
BLAKE2b-256 c79f17307ee95f4de3f574a8dc830c69dfa853942112e1e16b25977011f76419

See more details on using hashes here.

File details

Details for the file laddu-0.1.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 596f6a8b003ab754447fbf197d3124ac8399eddde7b0f025552b25421f07a4a3
MD5 4d429ef7c8cdb40e4d0fa51edcec3721
BLAKE2b-256 b536c0cd955b23198f1d41d1beba72f1036f8a5057c540b2d64d27a0e574cc5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page