Skip to main content

Amplitude analysis made short and sweet

Project description

Amplitude analysis made short and sweet

GitHub Release GitHub last commit GitHub Actions Workflow Status GitHub License Crates.io Version docs.rs Codecov PyPI - Version

laddu (/ˈlʌduː/) is a library for analysis of particle physics data. It is intended to be a simple and efficient alternative to some of the other tools out there. laddu is written in Rust with bindings to Python via PyO3 and maturin and is the spiritual successor to rustitude, one of my first Rust projects. The goal of this project is to allow users to perform complex amplitude analyses (like partial-wave analyses) without complex code or configuration files.

[!CAUTION] This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).

Table of Contents

Key Features

  • A simple interface focused on combining Amplitudes into models which can be evaluated over Datasets.
  • A single Amplitude trait which makes it easy to write new amplitudes and integrate them into the library.
  • Easy interfaces to precompute and cache values before the main calculation to speed up model evaluations.
  • Efficient parallelism using rayon.
  • Python bindings to allow users to write quick, easy-to-read code that just works.

Installation

laddu can be added to a Rust project with cargo:

cargo add laddu

The library's Python bindings are located in a library by the same name, which can be installed simply with your favorite Python package manager:

pip install laddu

Quick Start

Rust

Writing a New Amplitude

While it is probably easier for most users to skip to the Python section, there is currently no way to implement a new amplitude directly from Python. At the time of writing, Rust is not a common language used by particle physics, but this tutorial should hopefully convince the reader that they don't have to know the intricacies of Rust to write performant amplitudes. As an example, here is how one might write a Breit-Wigner, parameterized as follows:

I_{\ell}(m; m_0, \Gamma_0, m_1, m_2) =  \frac{1}{\pi}\frac{m_0 \Gamma_0 B_{\ell}(m, m_1, m_2)}{(m_0^2 - m^2) - \imath m_0 \Gamma}

where

\Gamma = \Gamma_0 \frac{m_0}{m} \frac{q(m, m_1, m_2)}{q(m_0, m_1, m_2)} \left(\frac{B_{\ell}(m, m_1, m_2)}{B_{\ell}(m_0, m_1, m_2)}\right)^2

is the relativistic width correction, $q(m_a, m_b, m_c)$ is the breakup momentum of a particle with mass $m_a$ decaying into two particles with masses $m_b$ and $m_c$, $B_{\ell}(m_a, m_b, m_c)$ is the Blatt-Weisskopf barrier factor for the same decay assuming particle $a$ has angular momentum $\ell$, $m_0$ is the mass of the resonance, $\Gamma_0$ is the nominal width of the resonance, $m_1$ and $m_2$ are the masses of the decay products, and $m$ is the "input" mass.

Although this particular amplitude is already included in laddu, let's assume it isn't and imagine how we would write it from scratch:

use laddu::prelude::*;
use laddu::utils::functions::{blatt_weisskopf, breakup_momentum};

#[derive(Clone)]
pub struct MyBreitWigner {
    name: String,
    mass: ParameterLike,
    width: ParameterLike,
    pid_mass: ParameterID,
    pid_width: ParameterID,
    l: usize,
    daughter_1_mass: Mass,
    daughter_2_mass: Mass,
    resonance_mass: Mass,
}
impl MyBreitWigner {
    pub fn new(
        name: &str,
        mass: ParameterLike,
        width: ParameterLike,
        l: usize,
        daughter_1_mass: &Mass,
        daughter_2_mass: &Mass,
        resonance_mass: &Mass,
    ) -> Box<Self> {
        Self {
            name: name.to_string(),
            mass,
            width,
            pid_mass: ParameterID::default(),
            pid_width: ParameterID::default(),
            l,
            daughter_1_mass: daughter_1_mass.clone(),
            daughter_2_mass: daughter_2_mass.clone(),
            resonance_mass: resonance_mass.clone(),
        }
        .into()
    }
}

impl Amplitude for MyBreitWigner {
    fn register(&mut self, resources: &mut Resources) -> Result<AmplitudeID, LadduError> {
        self.pid_mass = resources.register_parameter(&self.mass);
        self.pid_width = resources.register_parameter(&self.width);
        resources.register_amplitude(&self.name)
    }

    fn compute(&self, parameters: &Parameters, event: &Event, _cache: &Cache) -> Complex<Float> {
        let mass = self.resonance_mass.value(event);
        let mass0 = parameters.get(self.pid_mass);
        let width0 = parameters.get(self.pid_width);
        let mass1 = self.daughter_1_mass.value(event);
        let mass2 = self.daughter_2_mass.value(event);
        let q0 = breakup_momentum(mass0, mass1, mass2);
        let q = breakup_momentum(mass, mass1, mass2);
        let f0 = blatt_weisskopf(mass0, mass1, mass2, self.l);
        let f = blatt_weisskopf(mass, mass1, mass2, self.l);
        let width = width0 * (mass0 / mass) * (q / q0) * (f / f0).powi(2);
        let n = Float::sqrt(mass0 * width0 / PI);
        let d = Complex::new(mass0.powi(2) - mass.powi(2), -(mass0 * width));
        Complex::from(f * n) / d
    }
}

Calculating a Likelihood

We could then write some code to use this amplitude. For demonstration purposes, let's just calculate an extended unbinned negative log-likelihood, assuming we have some data and Monte Carlo in the proper parquet format:

let ds_data = open("test_data/data.parquet").unwrap();
let ds_mc = open("test_data/mc.parquet").unwrap();

let resonance_mass = Mass::new([2, 3]);
let p1_mass = Mass::new([2]);
let p2_mass = Mass::new([3]);
let mut manager = Manager::default();
let bw = manager.register(MyBreitWigner::new(
    "bw",
    parameter("mass"),
    parameter("width"),
    2,
    &p1_mass,
    &p2_mass,
    &resonance_mass,
)).unwrap();
let mag = manager.register(Scalar::new("mag", parameter("magnitude"))).unwrap();
let model = (mag * bw).norm_sqr();

let nll = NLL::new(&manager, &ds_data, &ds_mc);
println!("Parameters names and order: {:?}", nll.parameters());
let result = nll.evaluate(&[1.27, 0.120, 100.0], &model);
println!("The extended negative log-likelihood is {}", result);

In practice, amplitudes can also be added together, their real and imaginary parts can be taken, and evaluators should mostly take the real part of whatever complex value comes out of the model.

Python

Fitting Data

While we cannot (yet) implement new amplitudes within the Python interface alone, it does contain all the functionality required to analyze data. Here's an example to show some of the syntax. This models includes three partial waves described by the $Z_{\ell}^m$ amplitude listed in Equation (D13) here[^1]. Since we take the squared norm of each individual sum, they are invariant up to a total phase, thus the S-wave was arbitrarily picked to be purely real.

import laddu as ld
import matplotlib.pyplot as plt
import numpy as np
from laddu import constant, parameter

def main():
    ds_data = ld.open("path/to/data.parquet")
    ds_mc = ld.open("path/to/accmc.parquet")
    angles = ld.Angles(0, [1], [2], [2, 3], "Helicity")
    polarization = ld.Polarization(0, [1])
    manager = ld.Manager()
    z00p = manager.register(ld.Zlm("z00p", 0, 0, "+", angles, polarization))
    z00n = manager.register(ld.Zlm("z00n", 0, 0, "-", angles, polarization))
    z22p = manager.register(ld.Zlm("z22p", 2, 2, "+", angles, polarization))
    
    s0p = manager.register(ld.Scalar("s0p", parameter("s0p")))
    s0n = manager.register(ld.Scalar("s0n", parameter("s0n")))
    d2p = manager.register(ld.ComplexScalar("d2", parameter("d2 re"), parameter("d2 im")))

    pos_re = (s0p * z00p.real() + d2p * z22p.real()).norm_sqr()
    pos_im = (s0p * z00p.imag() + d2p * z22p.imag()).norm_sqr()
    neg_re = (s0n * z00n.real()).norm_sqr()
    neg_im = (s0n * z00n.imag()).norm_sqr()
    model = pos_re + pos_im + neg_re + neg_im

    nll = ld.NLL(manager, ds_data, ds_mc)
    status = nll.minimize(model, [1.0] * len(nll.parameters))
    print(status)
    fit_weights = nll.project(status.x, model)
    masses_mc = res_mass.value_on(ds_mc)
    masses_data = res_mass.value_on(ds_data)
    weights_data = ds_data.weights
    plt.hist(masses_data, weights=weights_data, bins=80, range=(1.0, 2.0), label="Data", histtype="step")
    plt.hist(masses_mc, weights=fit_weights, bins=80, range=(1.0, 2.0), label="Fit", histtype="step")
    plt.legend()
    plt.savefig("demo.svg")


if __name__ == "__main__":
    main()

This example would probably make the most sense for a binned fit, since there isn't actually any mass dependence in any of these amplitudes (so it will just plot the relative amount of each wave over the entire dataset).

Other Examples

You can find other Python examples in the python_examples folder. They should each have a corresponding requirements_[#].txt file.

Example 1

The first example script uses data generated with gen_amp. These data consist of a data file with two resonances, an $f_0(1500)$ modeled as a Breit-Wigner with a mass of $1506\text{ MeV}/c^2$ and a width of $112\text{ MeV}/c^2$ and an $f_2'(1525)$, also modeled as a Breit-Wigner, with a mass of $1517\text{ MeV}/c^2$ and a width of $86\text{ MeV}/c^2$, as per the PDG. These were generated to decay to pairs of $K_S^0$s and are produced via photoproduction off a proton target (as in the GlueX experiment). The beam photon is polarized with an angle of $0$ degrees relative to the production plane and a polarization magnitude of $0.3519$ (out of unity). The configuration file used to generate the corresponding data and Monte Carlo files can also be found in the python_examples, and the datasets contain $100,000$ data events and $1,000,000$ Monte Carlo events (generated with the -f argument to create a Monte Carlo file without resonances). The result of this fit can be seen in the following image (using the default 50 bins):

[!NOTE] There appears to be an overall scale factor difference between gen_amp and laddu, so the raw values for the real and imaginary parts of each wave do not match even though the overall fit, the ratio of S- to D-wave, and relative phase between the waves are consistent.

Data Format

The data format for laddu is a bit different from some of the alternatives like AmpTools. Since ROOT doesn't yet have bindings to Rust and projects to read ROOT files are still largely works in progress (although I hope to use oxyroot in the future when I can figure out a few bugs), the primary interface for data in laddu is Parquet files. These are easily accessible from almost any other language and they don't take up much more space than ROOT files. In the interest of future compatibility with any number of experimental setups, the data format consists of an arbitrary number of columns containing the four-momenta of each particle, the polarization vector of each particle (optional) and a single column for the weight. These columns all have standardized names. For example, the following columns would describe a dataset with four particles, the first of which is a polarized photon beam, as in the GlueX experiment:

Column name Data Type Interpretation
p4_0_E Float32 Beam Energy
p4_0_Px Float32 Beam Momentum (x-component)
p4_0_Py Float32 Beam Momentum (y-component)
p4_0_Pz Float32 Beam Momentum (z-component)
eps_0_Px Float32 Beam Polarization (x-component)
eps_0_Py Float32 Beam Polarization (y-component)
eps_0_Pz Float32 Beam Polarization (z-component)
p4_1_E Float32 Recoil Proton Energy
p4_1_Px Float32 Recoil Proton Momentum (x-component)
p4_1_Py Float32 Recoil Proton Momentum (y-component)
p4_1_Pz Float32 Recoil Proton Momentum (z-component)
p4_2_E Float32 Decay Product 1 Energy
p4_2_Px Float32 Decay Product 1 Momentum (x-component)
p4_2_Py Float32 Decay Product 1 Momentum (y-component)
p4_2_Pz Float32 Decay Product 1 Momentum (z-component)
p4_3_E Float32 Decay Product 2 Energy
p4_3_Px Float32 Decay Product 2 Momentum (x-component)
p4_3_Py Float32 Decay Product 2 Momentum (y-component)
p4_3_Pz Float32 Decay Product 2 Momentum (z-component)
weight Float32 Event Weight

To make it easier to get started, we can directly convert from the AmpTools format using the provided [amptools-to-laddu] script (see the bin directory of this repository). This is not bundled with the Python library (yet) but may be in the future.

Future Plans

  • Introduce Rust-side function minimization. My ganesh was written with this library in mind, and bindings will eventually be included to smooth over the fitting interface.
  • Allow users to build likelihood functions from multiple terms, including non-amplitude terms like LASSO.
  • Create a nice interface for binning datasets along a particular variable and fitting the binned data.
  • MPI and GPU integration (these are incredibly difficult to do right now, but it's something I'm looking into).
  • As always, more tests and documentation.

Alternatives

While this is likely the first Rust project (aside from my previous attempt, rustitude), there are several other amplitude analysis programs out there at time of writing. This library is a rewrite of rustitude which was written when I was just learning Rust and didn't have a firm grasp of a lot of the core concepts that are required to make the analysis pipeline memory- and CPU-efficient. In particular, rustitude worked well, but ate up a ton of memory and did not handle precalculation as nicely.

AmpTools

The main inspiration for this project is the library most of my collaboration uses, AmpTools. AmpTools has several advantages over laddu: it's probably faster for almost every use case, but this is mainly because it is fully integrated with MPI and GPU support. I'm not actually sure if there's a fair benchmark between the two libraries, but I'd wager AmpTools would still win. AmpTools is a much older, more developed project, dating back to 2010. However, it does have its disadvantages. First and foremost, the primary interaction with the library is through configuration files which are not really code and sort of represent a domain specific language. As such, there isn't really a way to check if a particular config will work before running it. Users could technically code up their analyses in C++ as well, but I think this would generally be more work for very little benefit. AmpTools primarily interacts with Minuit, so there aren't simple ways to perform alternative optimization algorithms, and the outputs are a file which must also be parsed by code written by the user. This usually means some boilerplate setup for each analysis, a slew of input and output files, and, since it doesn't ship with any amplitudes, integration with other libraries. The data format is also very rigid, to the point where including beam polarization information feels hacked on (see the Zlm implementation here which requires the event-by-event polarization to be stored in the beam's four-momentum). While there isn't an official Python interface, Lawrence Ng has made some progress porting the code here.

PyPWA

PyPWA is a library written in pure Python. While this might seem like an issue for performance (and it sort of is), the library has several features which encourage the use of JIT compilers. The upside is that analyses can be quickly prototyped and run with very few dependencies, it can even run on GPUs and use multiprocessing. The downside is that recent development has been slow and the actual implementation of common amplitudes is, in my opinion, messy. I don't think that's a reason to not use it, but it does make it difficult for new users to get started.

ComPWA

ComPWA is a newcomer to the field. It's also a pure Python implementation and is comprised of three separate libraries. QRules can be used to validate and generate particle reaction topologies using conservation rules. AmpForm uses SymPy to transform these topologies into mathematical expressions, and it can also simplify the mathematical forms through the built-in CAS of SymPy. Finally, TensorWaves connects AmpForm to various fitting methods. In general, these libraries have tons of neat features, are well-documented, and are really quite nice to use. I would like to eventually see laddu as a companion to ComPWA (rather than direct competition), but I don't really know enough about the libraries to say much more than that.

Others

It could be the case that I am leaving out software with which I am not familiar. If so, I'd love to include it here for reference. I don't think that laddu will ever be the end-all-be-all of amplitude analysis, just an alternative that might improve on existing systems. It is important for physicists to be aware of these alternatives. For example, if you really don't want to learn Rust but need to implement an amplitude which isn't already included here, laddu isn't for you, and one of these alternatives might be best.

[^1]: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A. P. (2019). Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX. Physical Review D, 100(5). doi:10.1103/physrevd.100.054017

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laddu-0.1.5.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp312-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

laddu-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp312-cp312-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

laddu-0.1.5-cp312-cp312-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp312-cp312-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

laddu-0.1.5-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

laddu-0.1.5-cp312-cp312-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

laddu-0.1.5-cp311-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

laddu-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp311-cp311-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

laddu-0.1.5-cp311-cp311-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp311-cp311-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

laddu-0.1.5-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

laddu-0.1.5-cp311-cp311-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

laddu-0.1.5-cp310-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

laddu-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp310-cp310-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

laddu-0.1.5-cp310-cp310-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp310-cp310-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

laddu-0.1.5-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

laddu-0.1.5-cp39-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

laddu-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp39-cp39-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

laddu-0.1.5-cp39-cp39-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp39-cp39-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

laddu-0.1.5-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

laddu-0.1.5-cp38-none-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

laddu-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp38-cp38-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

laddu-0.1.5-cp38-cp38-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp38-cp38-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

laddu-0.1.5-cp37-abi3-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7+ Windows x86-64

laddu-0.1.5-cp37-abi3-musllinux_1_2_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ x86-64

laddu-0.1.5-cp37-abi3-musllinux_1_2_i686.whl (3.4 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ i686

laddu-0.1.5-cp37-abi3-musllinux_1_2_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARMv7l

laddu-0.1.5-cp37-abi3-musllinux_1_2_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7+ musllinux: musl 1.2+ ARM64

laddu-0.1.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

laddu-0.1.5-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl (4.4 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ s390x

laddu-0.1.5-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

laddu-0.1.5-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARMv7l

laddu-0.1.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

laddu-0.1.5-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (3.3 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.12+ i686

laddu-0.1.5-cp37-abi3-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

laddu-0.1.5-cp37-abi3-macosx_10_12_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file laddu-0.1.5.tar.gz.

File metadata

  • Download URL: laddu-0.1.5.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5.tar.gz
Algorithm Hash digest
SHA256 0dc7d822679fb392aa2e704947aadb1bfaa75e02b5d77af49c56561d7e383f27
MD5 a8cecac213cadca3c9d67b1322e73999
BLAKE2b-256 31a06ec7c6afc6549ddf356e432fccbf1611fb8e9d8ff3ed1c5be4accd29d7d5

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6f81c0b9f6d6ebe645bb9793d509486565b85bf73a9ca7f9e07912659e76d81a
MD5 49356522ab8f4f61156d66f6b73188c8
BLAKE2b-256 9e7874d18c295610c5f4d6e90f9d3c0717937e45179d7572fecc92557cbe8582

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5355c309cf379b77f2a5a7dceed181c4b5685cee229cf1dbf6f28d4ca22c0f63
MD5 72d122cb240ca58ef81299793b5b2720
BLAKE2b-256 b14ffd8c19aedb8ba81cf4d78cc371747749b0cee1d168aef003646f8b9a64c5

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 933b4743560e46a5271bc6cc4a511aa4552203c5e55dc16b9fd2295a41954275
MD5 69c8498572fce38b14931f8fbeecde56
BLAKE2b-256 fd31b7fa2f85c4778371774a3adf70d3ef1ad3f4a6f25cf30124a28bed1beec7

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e08c926e62d844a45140d3d3901567c414508c0a65b9fb53c4b8727d30ab7e73
MD5 0c99081867a44add7124823c665dc582
BLAKE2b-256 51f586598687cc8a93fc68e586265940031a26af26042e2f49800080303d37e5

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15d96d6f43e40634aab0cbf1c469ec7ff03c65f7540364fa20bfc073229162cb
MD5 75b031a17509949a3d20554486a4b10f
BLAKE2b-256 aa16c443edde1e9d344c606eeb82bba70427ec7862d17716fecef25c17387802

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 37a3496d14cf1fa4e69a5b8c7ef1d61e9b3a3befcdcf191bdfa596bc02412ce6
MD5 1ceb5a9f001a9835f352bb04b85d5a43
BLAKE2b-256 0843bba9b2b50f07a10df99e7f0fa744b26e327e6bc7035639d4efcbdb6a492d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2550eafbd8b10bf305dfd866710915921b06d8cea27edac5efcdc318195630d0
MD5 96c22bbab55a412bff4030fc9fa65795
BLAKE2b-256 531b7998e54cda92285259087cd2c314e0397a764fe9b7365a0b03bb31988874

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e5bb23740cf7b0341b88173ea0fe08b1ae3745a873aa4c568ff8955227243de9
MD5 f6ff0c7df8bd98021e18061352a3acc2
BLAKE2b-256 c2db016541db729e5e9627616d9f44f857aceaee6579fe1b930906ae51c09355

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c18894805a34adac76b3ea318788c46ec2acf4b47ee96febfc65b832ba93bf49
MD5 2a854d1d5f214e2ad0cfcfaf80f4eb6b
BLAKE2b-256 5695a493c6b90ada4d11b2dff7c2caf08ef2eab03a7059042ef79e0c8e361af4

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 11fb8ed82b6ac1e8a0c15c87ec5e57c8e2068beca27890206c8f919269a1265a
MD5 7ac4f6ac0eb80dcecb7a6bc782a15550
BLAKE2b-256 80348f23d6c9428c3cde3a495e3cce32df5f0c68af9ff917a3176d68e0da3775

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 731d387c8a3d1d63d97aecb2e41039f3b33af5ba0b99484cdd5233f9c04e0972
MD5 3b68fe7d14b85f97636cbe46d3676cf2
BLAKE2b-256 fb5f07a62f18b08814b90fa3983fc73060b1c5357ce3d32236d356d845e1e3b6

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8dd27054e09a75d78c1ddd10c40aed48e77017de5a6cb0f09758121b9a34ea5a
MD5 91bc73142dc05750a895ba709804e121
BLAKE2b-256 f6ff65635c008425630284b10076e95bdd6619d3ee83de4bd785ae28bb2be420

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 23fa6aad7edca6890548209e370121d092f4593b3758f509b063d63efbbc79e4
MD5 26103aa6b61ae165e228194b81770d0a
BLAKE2b-256 b597e113a7e7d61b9e16f61abe0fe72386e5e8f1a50e2f36abff14a0bb642e6d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 15ec3222abe390abf905d2a2d9ee62779dc0de388e0bca62f3bd6066ac691a17
MD5 5fb413e70a8558ac22ee28fcf168ca73
BLAKE2b-256 4ca9403b08533505a6adb417fca50cabeaeae72b116ba7618b8565204676f530

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf92c5fab473e8d7fd8ab9c4ca4faff3bdbbbde428cfe980c34e9c1eda8e0699
MD5 f4275b7f17adb62d5fb5c2db8631c0be
BLAKE2b-256 e6a48c7eeb5971f731e3b4c0afe3497bfe8c8972d96393ebbf0909f7bf3e8fbe

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1cd5c21438d4f3674d5920a4e1aefe533e2364940ed0db98bf356b2ab7f878b4
MD5 31558655fb27aed86bab8e9befa55f69
BLAKE2b-256 b2f133937829cfbc83a27705bca9a07f67be7fe1dc1caed0865233b878d11198

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 39785837348e5b12c540f909e9b2ff7c2633bd13c18b4afbc0f0f332505ebf6b
MD5 dc2f80ae656c2b8774941d687bac24b9
BLAKE2b-256 0352b2a85339697332585f7bbfab8e01870d104ffa4600a415bb572e196cdf69

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0a375577baa02f3d200e3fd79f24d194eb32031fc458c0ff7a67a6c02bd69f68
MD5 3fbb55f33b9b9aab42bc0e3480518a2d
BLAKE2b-256 2f52f73c170ccfd4c8ab02948dcd60695d6ad119a92427f920c433c2a3a47d29

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c70092b01b61ef1bc3f7037bba91c69e86cde7ddb6f79f6d87c6ebf20b3ffb8
MD5 12bb5feb631865a349872f7a1ff7875e
BLAKE2b-256 c800ec3603285bee98bfe60b4015bf8ef3df0272abb3140f6fcdd2dbe365810b

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5898a59e0773aad00b407268f7f26f05622efea41d9c1031b64aeca78aa260f5
MD5 298e2c722c543b4905568d84b15e7558
BLAKE2b-256 abf7ab339f0a4eedfe64d1dc3bfc822df538b13892222f628b169fe7b86dd286

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d11a0c03bd1e2ddd8af9824e0339795262dfd41bdce243d73d0b0df3591b5128
MD5 c0f6eba012b8df706f0ac8f1a382ea33
BLAKE2b-256 31e98ccb65bb90aeccfd65a3ca7472be497bc969b08a2a233c5333e89c8fcbb0

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 eb8fa490484b337fdb0a465d992ac4da10d514cc20020f35376ca1a93c789d99
MD5 5cb5a4801977c24464eb868c032efcec
BLAKE2b-256 51ea29343369c3df413aca0eb66f02228e4cfcc8f1c071fc8690be6901098ecb

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e4a831577620316a7666e4e8991d37d26150d1c2ee9487936833d1021ca75e22
MD5 1b3676a5dc4c870ce0c5df9c3dae062d
BLAKE2b-256 5dbd7943ded22f404cd410743ecdb09f908ff395e88409befbf4b92a0423a34c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 061577a8e2d0c17d3cf84b0c42a61164a5fc08e6427f2de2799e27c489f193b2
MD5 9c83ca28b168dcbceba922c07c9ca644
BLAKE2b-256 e12ec40007cf850e424ed8408cc9b6295b8641b89b1d374efa49df2b67b1313d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f4b4c975fc97501e18508e48477d348d2a1a9f25f219c9cee1b24d30dd08cf98
MD5 d9a8d6b6c8d0e7a60899e1c5d8bd1c5d
BLAKE2b-256 38ead61d91a339e6a3cd90bc3e3dd4b02cdeefbb993c19db362b041abf4831b5

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 828fedc3e7a10b2516a6696651776767fd5f2c6e0128d35dbe816c20120b729e
MD5 39b2274bb4b226725fadb3bd69610b7d
BLAKE2b-256 b6b34149391aa07dd7f0318a1ad8b75a09980a1d4116164500aee5d560625241

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 906fd5e46691bb21819c1930f13203d22ff278e54953bae220343d032068629e
MD5 45827cfc581b6f966fb810f713bd04d7
BLAKE2b-256 915fd8fe9697aaf4cbd71c954112aa62ed81acb3b3c006f4c2f28ba316cb3f3d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b89f32e2b8a3e3df760b0306204ed3534ea24d8ef8bee11728ce0d1e0e5c2b3
MD5 34d77994bb22137b3c02cf67aa400798
BLAKE2b-256 f7315117382089f08b8eee0d5ad0b3bda6d6a3ab84f7e9ed556726784759e1ed

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 b44aaaf4cb25e23cc7c8274c3871b91e1afb646c18845bb0fc75c6da20619d3c
MD5 d8bb32da5f2923cc26b1ad96f663116c
BLAKE2b-256 40740ff8ab4efba399ad57a1e3c9eebd24f793b958815c6cc0d891801143a860

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 45c8556259759d31b4b6460467766e8e3be43432df7ddebdd170d15752ae554c
MD5 7b2d9aa155df4598b90cb9d98674429c
BLAKE2b-256 0c74339f6eaf1fa0064134e3a72f8ba4bde99082ece1147b5558a1e08aff5f4c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c4ae4cdfe7db0ccd5baf4c8de09483085820a2f12662e33339dea9dafaa28128
MD5 b5911f916f9d7c91c3ec67059ef8cbaa
BLAKE2b-256 7509482f8ec4bebf8a0a603ad20c3bc04d76a6d00c90943cd87a087326c78492

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3a8d1d30072a5c49794bb680498387928de2914145ab031a9556871e65f52c7e
MD5 90a62cc81e23340c45046b3b2dc4d252
BLAKE2b-256 27caa14c08641c69ef934d2ce32a36832479d43524d2e52e14afce3567a0be7b

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ed9d709f55afd2a2fc7c8a96473c3b6db4d1ac8d28b13ff5ad071b1b79b55033
MD5 2a1e24855e68b60e9127b8beb8ebde1b
BLAKE2b-256 686ea6ce3bf4b74daef72126ba9d1b0ab6609beb07c64a9b4d5479093a1e933e

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bf26b716a7252e6458b20265696d0a2ff5176436744b27ec9a9aa21dbe269bd
MD5 f82b6ca99b2ca32c6e4960d49e06597f
BLAKE2b-256 9ae031d9263adb481d9c02244b3312538ec496948bce19bd899ca01c41831189

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 108d9e300a3da22d78f61e6d65680ce60da04cc05655be09567c74044fd673d5
MD5 5546fe8f58d7652953a9728de23d572a
BLAKE2b-256 267cccfff11a5bda24f3e153b013563f4323a77d7f0dfa9ea0df6c60d96200cc

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ff39828a58625a844f07240a59418311cedf054486895c880d59fec3428071a7
MD5 7025c832f9484b0b67c4089592f8c908
BLAKE2b-256 dd844c77a25a30df70c428677f93aef2a2a87be6f7c34f73a65f8ead84ab0dba

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2458c6751d01e138e6d2a9224cb37e62753a667c61411ecb56f1212ea5855076
MD5 0b475ffb98dd4ca4eeeb08f57712ebc0
BLAKE2b-256 4df03935797fdd489d9b7b19ebcbc8e91f35c39120157ea527939cbf3c54d6da

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8199e69ad68c087bbc68665adf612f7df564b6f19b653cb44a68764af41d9cf
MD5 57f54501391e0b2b62a263f3e54e3872
BLAKE2b-256 d54d936eca373a05d5e83f8c7e43d265a72124783c7fc45a6827174f82abc0ef

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eeab35cae7e1b83f22b8a3614ee08b6bb6f1e06d37b701999eee24d188c5f2ab
MD5 8ea3ca8e6948aabb06d4761f9a372ced
BLAKE2b-256 b9a5c371e47bd13492826f518e7ce045aaf9becef04b6dc53f6a9203d67e675a

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dacde186f43f725baaf21ad2a0d2d008961aeb0712a5b8b4a8406075cd6a87f8
MD5 40452b5eb1532b3cf55873622ca7efdf
BLAKE2b-256 2b747ffeb0f57ec1a14b719097410509d2f8f0cd12bf08c1422355dedef3d5e2

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 70adcec127f1214910276d8d7dd2216cc0d38e57b434f470cbaffa650311d8b1
MD5 ebb58ccd13a9b8df7481cf674f508726
BLAKE2b-256 7d508817cb1c1f89b274b2e1b6916bb0f50aa58a58f10ffdbf4058a9b0dc56cf

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 3334abc1ec8795ffc48bce5fa8c91d01678d6db6c7ec4240e8e6eb69eaa877f1
MD5 cc1b4dde612605d17be7d4458fee4ead
BLAKE2b-256 4aa152c5ae3c959ae1668735559d35f0226b561a52ab99e10a92b5293dd5d014

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 867bc7a2feba6785c6e2cd50e282e2c5537be495579a0f8759d83d3cb95316aa
MD5 1366a0155b53e7acfc1d50e62ae1277a
BLAKE2b-256 4a564172a289a14105da5d27bd5c05ee901ba99754a799bb1388ba97c8d75f4b

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 d76481b4700ddbaf7dccedc09e44dcaef757180ec3edad6fc5303d8c605532b4
MD5 91049234fffa595a855f4d10df86215f
BLAKE2b-256 3e641258c8615f3eed55e6dc946aa92c65396e1ddf01dc897d2deaa7ce4fcb3e

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0c3b87c99a4ee58d4907b7d97751d7ccf37a3af2a1b8f988feaad7e6d4b192e9
MD5 9a304b0bf835ba051b3392d2645f64cb
BLAKE2b-256 32bc151afc830d72bdaf8104945636ec018b1084707181bec700ec42561297ec

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5e87e5e5254b42c6297147d76edffee1394a3c99b6d22d9ec689366ee04b1942
MD5 c9a1123c42fd0515e3668d5e21a7e12d
BLAKE2b-256 6fb2216ea29382d5ee8964346f7206c2e5a21e96055bcfc186ca2791f9a0ecad

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89303631c4e3cbf4f2d0e54b839e0bd07f4d383e9374efe398b3b94403663c13
MD5 88f1f6ba35c98db49a260589e7df89b3
BLAKE2b-256 d1c6a49c42c6b25514e802c9d10703f59f417eadf1b5cc4e65e918d6adb77f83

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f6e5d5fd08aa03b9e980ce096688dc4e00873275d5131d21bcffd3b5c019a318
MD5 091668314ef34acf329f1a94644b277b
BLAKE2b-256 3314285a2d3927aa34ac979b5b616c5ab8cfff10509f93fa74994308a953af87

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3a6af65074ce0d1d41a17d4503ec3be89664882ea030ed6ae3001f214206f3a6
MD5 4b8c90d663f5c906cf2a71426f1bcd01
BLAKE2b-256 8a1236ab8ace814247cfd36294934560a5c6b3df6505d9c164b297e5f4aa143a

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a96170a2bd34d9ca16033858259d1d11e7c3b50246143136688ddda61079169d
MD5 40b482d6a48e6983d7613ca0fa86e045
BLAKE2b-256 adc02111c853759761e6d106fe382ce3709885b1b5a357d9a5018f25d667d097

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bbc247d18f5657fb4eef231322a8548557ba7539fd398fa55404197fcaba651
MD5 51f60ba79f9b2b075fc60b72b0b75d84
BLAKE2b-256 db928e6d9c1fcce53b81cd6416146a3bba55badd067ca67c6bdea3be9bf69b80

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1b2ed8a89a34c953a8c0a16c7746e3cfddd21e5f75606cf66e39cb95d3581faf
MD5 5a849d30b51b0085bda644632e509f6e
BLAKE2b-256 c1a0bf5c329290028bc5701ee328c84efa6aea7c0cf26c63fbb31c5efa99980c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe542ffe55d00d91d97304fe825929c9bb6ba1cb471e0f7993e7b9b521b1194b
MD5 e174957954cb1112c869a14e3be2cbf9
BLAKE2b-256 41621efaa29fe8ff1eda7d8e88bd026a229a5966d5fd4316087e9a135679c444

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 68aabbd4261cbf6ddbbf83fa74c1beb66ae170590afcd4156e5f1d0acd50181e
MD5 82905b1d62256da1ca75427e3014c2ef
BLAKE2b-256 ea17b3551f0e1ef03dd0c1fbc08a27076ccbe4ebcd7bdfc55a760e2efa0b1ef7

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ca80ea10e47e493ace1a81e913f456ffc86a12f8fa537b78fb953515c893f903
MD5 0d304d7ac2b5f83d44810e9a11efea3e
BLAKE2b-256 6fdb1eeb38508129e9a2b52d988c0951296e44c6af1f596a14f6a1746bc9b38a

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 806bfe5eafa1d2a3fb7f94500e042acc23400d397cc4cb5a402597759b4d8c6e
MD5 280b5b683259ed0fac5fc5113f968452
BLAKE2b-256 9b8c373bbb378496f9db0cb643538f52c40a7279f81d6cb3ff93eae485ffc729

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 36c945e487c678b3ca97608fc0202d0c09c28d9e3035a7031a953e9684d9fe05
MD5 ad7c3f9aafd58105151acf8e49fa6843
BLAKE2b-256 f3fe436f7958d22edfe7ade7f689aa9afaf2195d8d5323952bd4b4358b217ba1

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 acbc1224f0f83041f58a01528dbd8a8dd19a46c0703d7a5190a723f297c96bb8
MD5 64ea8b2ab6b07fe8f0c8197a2b73d382
BLAKE2b-256 049b4e62440204a4b3d0b07eebae87250d422518d7a68f0c3beafd0c4b393a43

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ad363f1480c3d3725db23b8b5733f7e804281121e58c9165d3fdb379204bf99f
MD5 ef68d8f66d7c84f51a8e5fc1e1b36d05
BLAKE2b-256 4084de70f7c46a8437ff5ff3a1d7052602702a438cb82d2c922a4f1dd887166c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 327c2cc208757557e5d0dae98aab9dfb20491355f2f001fce9c705ddd3287c9a
MD5 b01a046cd505e3d924567806cd93da46
BLAKE2b-256 633f69da31e58492df463f0f26a8caec3c0ad7c1f7f6363b1b734bdca4de3161

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9db388290b36cf8c48161231ca97a00022eac0eda6fd75e58ae6f3278c0ac16c
MD5 3e6d48a2acba90a0ef87134d8078c04d
BLAKE2b-256 4181b67dee098f7d8c49a24c3d4201d2f327ec9d6d98e09a7724293155c56f56

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 804ac84cbd44093d8776e33d5fd4202e758557ff13cfe3282a99a3510408486a
MD5 fb9a6de1860dcaedb3d2707cb55da431
BLAKE2b-256 cecb63fa3555783189888c0932d5c9ae3669e5b6cfa90a8ce50afdaa6f77e2a9

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 70967346b99129b69493ccf42be648c21b9fac63a19913d386e2f164ada4a574
MD5 cfd3b07445847ab99505efd7186ad40c
BLAKE2b-256 f2cc49e99ed4f193ddde05ac28d4636dd97630c8d8cbaaf1e22de3ebd1b0d29a

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8e4e11e7ad1965e268d153acca49d735522e825c65e9d76e8112bd5d9b05fe5
MD5 8b7917b945e2eef43a4d6c34c6a4af08
BLAKE2b-256 415f8636727aa7c3adc6994b1dc3c7eef42bbea4cbac6fd9fa527909acc707a0

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3f577b06abc593a325d81b8b6e1d0da607ce637c08dc647c14ec422d6e024294
MD5 9ce6aa7ef905b8605f2891597aeb37fd
BLAKE2b-256 df33f50055b7e7736a882676bbdd4822b2c055fa260d2c7b6f69c73d03796478

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee583e541bf59058b1cca8f0d0a2c9934c67ae23378e90bc8618a7825ae2671a
MD5 d4b5bde58548685b65fbec6fb69b9a12
BLAKE2b-256 2bcf48194a3aa645b7a72c028d968bb4e822b6a5fd60fe7acc569174c538ce36

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 98549458b4d16d44c786cd5cf6dc3479725f42c910bb02dda4a55bef5189d3ea
MD5 4766c08f009d91ff89d6cb95f0d45592
BLAKE2b-256 184dd540e6cc50c299509e5ce64617ff9d7b46a0c96b00c31f88c3470ff23e23

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 401c0fbd74c2c73f4649cc6b184dc7ac8fd7598059586e4ae8d1e64cb0e4d332
MD5 2aabe09c79a31333b25185c624773688
BLAKE2b-256 845ce30096608a6e3ef454ac0f6234defa8031f2293bf2f907f971a5164abb54

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1a85463f97dcd107480c2d67c1d2f941d3df592b90c48a973e35c2ff8baf7103
MD5 7698360da68f127a0a4ecaaa7b0361cd
BLAKE2b-256 87b0c259fbd4d1dd9d7ea176083e0575e1089a4a0fecd6a567196b4f25075ea6

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 fb494000026c624a97739a1a516a2b611cbd554a7308f7020d4b97e76560e3ee
MD5 667ed28f99706375d06b5dcbeec22016
BLAKE2b-256 b64f256a8677079e57d0fdeb43f9de23c37c99d4697dcec84fcadabe30808252

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ac47b3bb4b0a2c97b157fab38048106e3c6c66ba9ebe885f0106d905bd07cd1e
MD5 84d05961454b1e8ffb70729a995f580c
BLAKE2b-256 4c3f12aedcd1578b7a376aad2250b027d7d1d6ed1ce86b07d45cf16d1890353c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aeb41a1d30005b291b0a9be082075afb7ef4cbead0ad2aa8731558302b01d948
MD5 c0e76d01f5f4b84c0654d141a1a23218
BLAKE2b-256 095e08d5c3c3b761d5a65f782b77e1d0c1b4b7787da5f6effa2d6e7ddacf2fc8

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6e36b5c8b2ff6be00c1dd36cdc72c6efe4461c1c2f5a73eaf7b17948eb3d46ff
MD5 786f39f5a012d9b98d6dd8225c7a0b3a
BLAKE2b-256 fbe18facd4f6e8d70d54e9e8d9419a5dd258db72d719d3e08d55bd68481cf457

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 680c2ec938d06cc7ddbafc5feb54e0b3924c6028c9b6bc729ab8e99654df1c86
MD5 2bc5cd00563bd4c1caf50caf794c1a32
BLAKE2b-256 c6b36ba70c8540a24b3baf45711cb799ad13dc20e696089c1df4893aa374caaa

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 cf89c803f3e61190f29f0c6aab5d9bf152a71bd1ece1e948257b6580f0da7569
MD5 8a3747cd86e968318cd69bee8fa5c846
BLAKE2b-256 0b0c7a9e940ced6bfd590a0cb2218a775b25fd20cfa2b413908ba9f4b7dffb7d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b6e265765149729f470c087c0cdc462e8ee689039af8625e3903e83906df5df
MD5 d3c482cb92d2a747760258e29c99cf9b
BLAKE2b-256 100943db24b613871ed1ec5ce2150c8a7b522a63a1206fb0e083cdf3cc59bb15

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ee32ea92dfbc99938ae009151883af9f7c5a387d82d270135212a1c6a5b1ae03
MD5 efbdf16868c3a6a843842fb24734e13f
BLAKE2b-256 1f00690c6b2b61cfe2e75ac662672d13f0dd68919cc99cf18fcd9859b11aa820

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05de7d673d78592bc9a5cd580dbef422b642baf40a49ff654a9bbecf0737a6b2
MD5 8a2c7ac04a223593fe51df1e3878693c
BLAKE2b-256 79ec31073001340844aebf1280daf2803bd733f49503125758ee3cc90d3ccd10

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-none-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 1633663bbaf6457f22c6586ed55289c21c3afe8e876edab71d26c9ae594b1371
MD5 e4f6ae1efae2449a3eeda86aef2347f5
BLAKE2b-256 02bd6bf6a659a1893eaa8a58f4d41cb35419215ed88638b70afdfb1ba1a4e442

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d3aa28cf322bda16276d84b070e2d823a9563b55e59dd486e11563f67f95e558
MD5 6c2ca92b54502a8d15025a9aa206a516
BLAKE2b-256 f159ace3fef4883ad2044634946806313d2c57f9e188439c5a77dc1c8219b0c7

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5e8085d2f2477cddb6356ff8cc26c21dc75c9f788ea840f213412f4e8f6ed0e2
MD5 c89b347cc3a9c81d23200cf8881fa5ba
BLAKE2b-256 f13280ba7298d85aac3bfd2d8064e33a7805770b3ba4c7b9df6a8bb70d6f2b1d

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 fa2a6fb2aa9cc14e0faec8444bac23392db6dcf0e9c92fda5ff83fa026052dbe
MD5 fc1e20fb01422f30188168facc4001fa
BLAKE2b-256 f7cb7fbc468cfcdc0ffe54c77e9a562dd4e381c51420bd396ef571fb7338f22c

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d9d8da0a093c2f206a0ffc4a04c4e2f5d5716ad55f3ab518d7c50bed07a50677
MD5 8aa57fc98c35334640f8860c743d3ec7
BLAKE2b-256 0afb73e759dfafa385191841229d28a26a59ce723461f06537a594f51ef05b4b

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dafd7e02210486de4358a8e60c6edef613c38f4d5cdce9998422feb6c4e4a80
MD5 28fc6dd2372cd6e4fe4219d23af131f5
BLAKE2b-256 f3dedd0d80f7a1112a008ad1d51cfa9858ebdecbc416d715ba9195acc2b8aa05

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1b04d869428e6199c15bf9b1d9e54d9df81e5dc628d986b7cc9338560afe953e
MD5 a1512ae845421010f0bbd62fc5649f37
BLAKE2b-256 4a3e94fe667bf68ee4a2c52a72509adee77b24c5ced4ec7c84101fef71541093

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6a39f545a9cd39382ade5fc21765373b2dfd06675f7ba891b7d010e7cab2421b
MD5 1546327fb05a68b7488be89879b479d6
BLAKE2b-256 9ad255f8275f9911e57489479f58dd041af1cd6749d3264b92cd775c88cf9267

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 f1842dc3f2e2f6a31c827e6e64eb3fa42892c7276ab513184c945b4d8c32597c
MD5 c91228d7c04a9608faddf1bed4c2f120
BLAKE2b-256 f34104bc66ee3271f21c4497ca16b12d13a25f0dd52d51670df870fa82b888fb

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 506b735e4d46674409e1fb59e66210070c51a559a059b012a14cbf0409273f9b
MD5 1c347fb60bc3ee0b7c56c4ea08aced0f
BLAKE2b-256 f55464f177c51e46530bb12c497241ba54bc5f6b6637dddd79d966816c5643e6

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a8afeb246b172a6862013e561fab6e8b415a54b9cffe81db412ca6f1cef1b67d
MD5 8d06a2198f15d7b09f59d5c07041e224
BLAKE2b-256 b63f2352df29f15ca9d9449a203a5443f4f42015959fe2d0b0bf032585ce6688

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-win_amd64.whl.

File metadata

  • Download URL: laddu-0.1.5-cp37-abi3-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for laddu-0.1.5-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 af2a85e7e3af3afc857343fa64c683a1b306a4b0d86f8f97be421680312c6bbb
MD5 37c0398b66e142222a745282f91eecce
BLAKE2b-256 d03ddb2ddc100b8c2ee64769c6e1b39967546b9b6fc350981cae5e0d65e9117a

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e55fabb9508154c935c569b4a353d0217d147655b0e91de869da409e686f41a7
MD5 c0056c89b946ec8a9045adff02fe2f33
BLAKE2b-256 36438c8a22ba6695a3bf7811c5b6f0570f101eba96baeea282f199d5ea5ebcbb

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bc3ec975fe3c1ca9c552b23a1579260dbb36140d51d7e97b8fa4a53aa6eacb85
MD5 8461b4ea1b22b37ac5a78aaee9fb1186
BLAKE2b-256 e0a0505d6571cfd52f60e87d6e8bb5931d83b336b300f04cfc2f0fe42920b4d3

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e76511262480003e4348cd9e61a1c0e1a25c4b31d877655baf77f97719e88dc6
MD5 fcb41d2a1cf8ba412bb97847d717286c
BLAKE2b-256 5addcac261f4fa07e2628e67efc2891f2f555e531d36628d3402bae68734fb04

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 310b85771f2210205e9b7b689377e9c448cf195bedaed38f9e4544b77058535c
MD5 d314fd770f43da75c3087175fe94e4fd
BLAKE2b-256 44f6df0101b7198edf2b07388220baab6a47d8f4d9f54f631a3f91110c4e1c33

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e4e918d82112441c7832ab84f2a9d88c1284027366e25e3ef40ec90d7b1d106
MD5 0e6e6bbe5f13844ff76531c37e0e8109
BLAKE2b-256 377351a45205c6d8fdb8443ad0a312b56f1842957c8c21aef6c749ae334736da

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a12d20e56ad65e46bcf756dd5eb38e6fb1ddea8b4bc1d34dc9b2906b72efee11
MD5 4de58a6738e1a746667d1d42b223c981
BLAKE2b-256 9f6b8827cdd4c79affc98cfe0f9e0915bbc5ad07874a6305eaae31a92a768a46

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b8afe6228c0706322db6291cc5aea41d16cc34f595cfceeac2fa4eaf26f606fe
MD5 d9fecf784577e6e481af003adca131ce
BLAKE2b-256 11881c7f35c42859c2238d0f756155ee4b0d09e8f17cb5ab166180239a606fd6

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 043f5fb011afba4658dc81fe19aa0643015d53a09ce8278b3e5fe8d3773723b0
MD5 0769c09aaf82eaf3a6800ad7efe87626
BLAKE2b-256 7c32b786f6e6babfae642bb240b24bb61b43ad902b69825c7c6af1425940d85b

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3842fb07bf49ecbe6349d18a246078d81f1509bf279bc9fb7cbed28ae217c419
MD5 558b9e52e59480140005a529afc1a250
BLAKE2b-256 8e96b117bbfedee30f77d6271f3376f375aabdf29ca124fcc3cb675ea528e022

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d73e72ea300469a84bfbeb32f00e56dbf4c6379cf48040cb68fe919dc32bc48b
MD5 a2914eecaa8b602955b8a370e2129f1a
BLAKE2b-256 43c6ec3b800f3d1ecf2cc2a0800ab303c0e682be80800f042811e38b7a19b694

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb3a10563be96e3cb16ff4aa392c017888da92b859a17ee1f5df0851b3925cb5
MD5 c5ee33ce8f38b40b74c1481c57771380
BLAKE2b-256 76d6bc3f509610a26ca4143bc157ac630a22907d70c69d6099a404c482c412c6

See more details on using hashes here.

File details

Details for the file laddu-0.1.5-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for laddu-0.1.5-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 eafa4651154ea8dfbd0b8be0a99bfb307233808f6c2815b70e91b37c01ff5940
MD5 d0c43a7c097e888ee15fadab27aa21c0
BLAKE2b-256 f268bb9d0a3075cd12bdf51cb5be7b1f80870a064c9a2cc6c69e6caad64975c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page