Skip to main content

Data Science Iterator Algorithm Library

Project description

LambdaData

© 2020 Robert Sharp

Lambda Data Science Iterator Utility Library

LambdaData is a Python extension for high performance data engineering.

Coverage

  • Doc Coverage: 100%
  • Test Coverage: 90%
    • All Tests Passing

Table of Contents:

  • Generators
    • iota
    • generate
    • generate_n
  • Expansions
    • fork
    • exclusive_scan
    • inclusive_scan
  • Transforms
    • transform
    • adjacent_difference
    • partial_sum
  • Permutations
    • partition
  • Reductions
    • reduce
    • accumulate
    • product
    • min_max
  • Queries
    • all_of
    • any_of
    • none_of
  • Transform & Reduction
    • transform_reduce
    • inner_product
    • matrix_multiply
  • Multidimensional Reductions
    • zip_transform
    • transposed_sums
  • Multi-Set Operations
    • union
    • intersection
    • difference
    • symmetric_difference
  • Pandas Helpers
    • value_span
    • star_cat_row
    • star_cat_col
    • StateLookup
  • Random Utilities (Fortuna)
    • random_range
    • shuffle: Knuth_B
    • TruffleShuffle

Generators

LambdaData.iota

Help on built-in function iota in module LambdaData:

iota(...)
    iota(start, *, stop=None, step=1, stride=0)
    Iota
       Iterator of a given range with grouping size equal to the stride.
       The stop parameter is exclusive, if none is provided the algorithm will
           start at zero and use the start parameter as the exclusive stopping point.
           This is the same behavior as Random.randrange()
       If stride is zero - a single dimension iterator is returned.
           Otherwise, stride controls the length of the inner sequences.

       DocTests:
       >>> list(iota(10))
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
       >>> list(iota(start=1, stop=11))
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
       >>> list(iota(start=2, stop=21, step=2))
       [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
       >>> list(iota(start=2, stop=21, step=2, stride=2))
       [(2, 4), (6, 8), (10, 12), (14, 16), (18, 20)]

       @param start: Beginning. Required.
       @param stop: Ending. Default is None.
       @param step: Stepping. Default is one.
       @param stride: Size of groupings. Default is zero.

LambdaData.generate

Help on built-in function generate in module LambdaData:

generate(...)
    generate(func: Callable, *args, **kwargs)
    Generate
       Infinite iterator of a callable with arguments.

       DocTests:
       >>> counter = itertools.count(1)
       >>> gen = generate(next, counter)
       >>> list(next(gen) for _ in range(10))
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

       @param func: Callable.
       @param args: Positional arguments for the functor.
       @param kwargs: Keyword arguments for the functor.

LambdaData.generate_n

Help on built-in function generate_n in module LambdaData:

generate_n(...)
    generate_n(n: int, func: Callable, *args, **kwargs)
    Generate N
       Abstract generator function. Finite.

       DocTests:
       >>> counter = itertools.count(1)
       >>> list(generate_n(10, next, counter))
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

       @param n: Number of elements to generate.
       @param func: Callable.
       @param args: Positional arguments for the functor.
       @param kwargs: Keyword arguments for the functor.

Expansions

LambdaData.fork

Help on built-in function fork in module LambdaData:

fork(...)
    fork(array: Iterable, forks: int = 2) -> tuple
    Fork
       Iterator Duplicator. Same as itertools.tee but with a better name.

       DocTests:
       >>> it = iter(range(10))
       >>> a, b, c = fork(it, 3)
       >>> list(c)
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
       >>> a == b
       False
       >>> list(a) == list(b)
       True

       @param array: Iterable to be forked.
       @param forks: Optional Integer. Default is 2. Represents the number of forks.
       @return: Tuple of N Iterators where N is the number of forks.

LambdaData.inclusive_scan

Help on built-in function inclusive_scan in module LambdaData:

inclusive_scan(...)
    inclusive_scan(array: Iterable, init=None) -> Iterator
    Inclusive Scan -> Adjacent Pairs

       DocTests:
       >>> list(inclusive_scan(range(1, 10)))
       [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
       >>> list(inclusive_scan(range(1, 10), 0))
       [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]

       @param array: Iterable to be scanned.
       @param init: Optional initial value. Default is None.
       @return: Iterator of Pairs.

LambdaData.exclusive_scan

Help on built-in function exclusive_scan in module LambdaData:

exclusive_scan(...)
    exclusive_scan(array: Iterable, init=None) -> Iterator
    Exclusive Scan -> Adjacent Pairs
       Like inclusive_scan, but ignores the last value.

       DocTests:
       >>> list(exclusive_scan(range(1, 10)))
       [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)]
       >>> list(exclusive_scan(range(1, 10), 0))
       [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)]

       @param array: Iterable to be scanned.
       @param init: Initial Value.
       @return: Iterator of Pairs.

Transforms

LambdaData.transform

Help on built-in function transform in module LambdaData:

transform(...)
    transform(array: Iterable, func: Callable) -> Iterator
    Transform
       Similar to map but with a reversed signature.

       DocTests:
       >>> list(transform(range(10), add_one))
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
       >>> list(transform(range(10), square))
       [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

       @param array: Iterable of Values.
       @param func: Unary Functor. F(x) -> Value
       @return: Iterator of transformed Values.

LambdaData.adjacent_difference

Help on built-in function adjacent_difference in module LambdaData:

adjacent_difference(...)
    adjacent_difference(array: Iterable) -> Iterator
    Adjacent Difference
       Calculates the difference between adjacent pairs.
       This is the opposite of Partial Sum.
       The first iteration compares with zero for proper offset.

       DocTests:
       >>> list(adjacent_difference(range(1, 10)))
       [1, 1, 1, 1, 1, 1, 1, 1, 1]
       >>> list(adjacent_difference(partial_sum(range(1, 10))))
       [1, 2, 3, 4, 5, 6, 7, 8, 9]
       >>> list(adjacent_difference(partial_sum(range(-10, 11, 2))))
       [-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10]

       @param array: Iterable of Numeric Values.
       @return: Iterator of adjacent differences.

LambdaData.partial_sum

Help on built-in function partial_sum in module LambdaData:

partial_sum(...)
    partial_sum(array: Iterable) -> Iterator
    Partial Sum
       Calculates the sum of adjacent pairs.
       This is the opposite of Adjacent Difference.

       DocTests:
       >>> list(partial_sum(range(1, 10)))
       [1, 3, 6, 10, 15, 21, 28, 36, 45]
       >>> list(partial_sum([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]))
       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

       @param array: Iterable of Numeric Values.
       @return: Iterator of adjacent sums.

Permutations

LambdaData.partition

Help on built-in function partition in module LambdaData:

partition(...)
    partition(array: Iterable, predicate: Callable) -> Iterator
    Stable Partition
       Arranges all the elements of a group such that any that return true
           when passed to the predicate will be at the front, and the rest will be
           at the back. The size of the output iterator will be the same as the
           size of the input iterable.

       DocTests:
       >>> list(partition(range(1, 10), is_even))
       [2, 4, 6, 8, 1, 3, 5, 7, 9]
       >>> list(partition(range(1, 10), is_odd))
       [1, 3, 5, 7, 9, 2, 4, 6, 8]

       @param array: Iterable of values to be partitioned.
       @param predicate: Unary functor. F(x) -> bool
       @return: Partitioned Iterator.

Reductions

LambdaData.reduce

Help on built-in function reduce in module LambdaData:

reduce(...)
    reduce(array: Iterable, func: Callable, initial=None)
    Reduce
       Similar to accumulate but allows any binary functor and/or an initial value.

       DocTests:
       >>> reduce(range(1, 5), operator.add)
       10
       >>> reduce(range(1, 5), operator.add, 100)
       110
       >>> reduce(range(1, 5), operator.mul)
       24
       >>> reduce(range(1, 5), operator.mul, 0)
       0

       @param array: Iterable of Values to be reduced.
       @param func: Binary Functor.
       @param initial: Initial value. Typically 0 for add or 1 for multiply.
       @return: Reduced Value.

LambdaData.accumulate

Help on built-in function accumulate in module LambdaData:

accumulate(...)
    accumulate(array: Iterable)
    Accumulate
       Returns the Sum of a range of elements.
           Same as sum() or reduce with operator.add

       DocTests:
       >>> accumulate(range(5))
       10
       >>> accumulate(range(11))
       55

       @param array: Iterable of Values to be summed.
       @return: Sum of Values.

LambdaData.product

Help on built-in function product in module LambdaData:

product(...)
    product(array: Iterable)
    Product
       Reduce with multiply.
       For counting numbers from 1 to N: returns the factorial of N.

       DocTests:
       >>> product(range(1, 5))
       24
       >>> product(range(5, 10))
       15120

       @param array: Iterable of Values to be reduced.
       @return: Product of all elements multiplied together.

LambdaData.min_max

Help on built-in function min_max in module LambdaData:

min_max(...)
    min_max(array: Iterable) -> tuple
    Min & Max Element

       DocTests:
       >>> min_max(range(1, 10))
       (1, 9)
       >>> min_max([100, 42, 69, 1])
       (1, 100)

       @param array: Iterable of Numeric Values
       @return: Tuple(Minimum, Maximum)

LambdaData.star_sum

Help on built-in function star_sum in module LambdaData:

star_sum(...)
    star_sum(*args)
    Star Sum: Add All Args
       Similar to accumulate, but takes an arbitrary number of arguments.

       DocTests:
       >>> star_sum(1)
       1
       >>> star_sum(1, 2)
       3
       >>> star_sum(1, 2, 3)
       6
       >>> star_sum(1, 2, 3, 4)
       10

       @param args: Numbers to be summed.
       @return: Sum of all arguments.

LambdaData.star_product

Help on built-in function star_product in module LambdaData:

star_product(...)
    star_product(*args)
    Star Product: Multiply All Args
       Similar to product, but takes an arbitrary number of arguments.

       DocTests:
       >>> star_product(0, 42)
       0
       >>> star_product(3, 3, 3)
       27
       >>> star_product(1, 2, 3, 4)
       24

       @param args: Numbers to be multiplied.
       @return: Product of all arguments.

Queries

LambdaData.all_of

Help on built-in function all_of in module LambdaData:

all_of(...)
    all_of(array: Iterable, predicate: Callable) -> bool
    All of These

       DocTests:
       >>> all_of([], is_even)
       True
       >>> all_of([2, 4, 6], is_even)
       True
       >>> all_of([1, 4, 6], is_even)
       False
       >>> all_of([1, 3, 5], is_even)
       False

       @param array: Iterable to inspect.
       @param predicate: Callable. f(x) -> bool
       @return: Boolean.

LambdaData.any_of

Help on built-in function any_of in module LambdaData:

any_of(...)
    any_of(array: Iterable, predicate: Callable) -> bool
    Any of These

       DocTests:
       >>> any_of([], is_even)
       False
       >>> any_of([2, 4, 6], is_even)
       True
       >>> any_of([1, 4, 6], is_even)
       True
       >>> any_of([1, 3, 5], is_even)
       False

       @param array: Iterable to inspect.
       @param predicate: Callable. f(x) -> bool
       @return: Boolean.

LambdaData.none_of

Help on built-in function none_of in module LambdaData:

none_of(...)
    none_of(array: Iterable, predicate: Callable) -> bool
    None Of These

       DocTests:
       >>> none_of([], is_even)
       True
       >>> none_of([2, 4, 6], is_even)
       False
       >>> none_of([1, 4, 6], is_even)
       False
       >>> none_of([1, 3, 5], is_even)
       True

       @param array: Iterable to inspect.
       @param predicate: Callable. f(x) -> bool
       @return: Boolean.

Transform & Reduce

LambdaData.transform_reduce

Help on built-in function transform_reduce in module LambdaData:

transform_reduce(...)
    transform_reduce(lhs: Iterable, rhs: Iterable, transformer: Callable, reducer: Callable)
    Transform Reduce
       Pairwise transform and then reduction across all results.

       DocTests:
       >>> transform_reduce(range(1, 6), range(1, 6), operator.mul, sum)
       55
       >>> transform_reduce(range(1, 6), range(1, 6), operator.add, product)
       3840

       @param lhs: Left Iterator
       @param rhs: Right Iterator
       @param transformer: Binary Functor F(x, y) -> Value
       @param reducer: Reduction Functor F(Iterable) -> Value
       @return: Reduced Value

LambdaData.inner_product

Help on built-in function inner_product in module LambdaData:

inner_product(...)
    inner_product(lhs: Iterable, rhs: Iterable)
    Inner Product
       Preforms pairwise multiplication across the iterables,
           then returns the sum of the products.

       DocTests:
       >>> inner_product(range(1, 6), range(1, 6))
       55
       >>> inner_product(range(11), range(11))
       385

       @param lhs: Left Iterator
       @param rhs: Right Iterator
       @return: Sum of the products.

LambdaData.matrix_multiply

Help on built-in function matrix_multiply in module LambdaData:

matrix_multiply(...)
    matrix_multiply(left, right)
    Matrix Product
       Row by Column inner product.

       DocTests
       >>> list(matrix_multiply([[1,2], [3,4]], [[1], [2]]))
       [(5,), (11,)]
       >>> list(matrix_multiply([[10,20], [30,40]], [[10], [20]]))
       [(500,), (1100,)]

       @param left: M x N matrix
       @param right: N x P matrix
       @return: M x P matrix

Multidimensional Reductions

LambdaData.zip_transform

Help on built-in function zip_transform in module LambdaData:

zip_transform(...)
    zip_transform(transducer: Callable, *args: Iterable) -> Iterator
    Zip Transform
       The transducer should take the same number of arguments as the number of
       iterators passed. Each iteration will call the transducer with the ith element
       of each iterable. F(a[i], b[i], c[i]...) ...

       DocTests:
       >>> l1 = (0, 1, 2, 3)
       >>> l2 = (8, 7, 6, 5)
       >>> l3 = (1, 1, 1, 1)
       >>> list(zip_transform(star_sum, []))
       []
       >>> list(zip_transform(star_sum, l1))
       [0, 1, 2, 3]
       >>> list(zip_transform(star_sum, l1, l2))
       [8, 8, 8, 8]
       >>> list(zip_transform(star_sum, l1, l2, l3))
       [9, 9, 9, 9]

       @param transducer: Callable
       @param args: Any number of iterables.
       @return: Iterator of values from the transducer.

LambdaData.transposed_sums

Help on built-in function transposed_sums in module LambdaData:

transposed_sums(...)
    transposed_sums(*args: Iterable) -> Iterator
    Transposed Sums - Column Sums
       The size of the output iterator will be the same as
           the smallest input iterator.

       DocTests:
       >>> l1 = (0, 1, 2, 3)
       >>> l2 = (8, 7, 6, 5)
       >>> l3 = (1, 1, 1, 1)
       >>> list(transposed_sums(l1, l2, l3))
       [9, 9, 9, 9]

       @param args: Arbitrary number of Iterators of numeric values.
       @return: Iterator of transposed sums aka column sums.

Multi-Set Operations

LambdaData.union

Help on built-in function union in module LambdaData:

union(...)
    union(*args: set) -> set
    Multiple Set Union
       Includes all elements of every set passed in.

       DocTests:
       >>> s1 = {0, 2, 4, 6, 8}
       >>> s2 = {1, 2, 3, 4, 5}
       >>> s3 = {2, 8, 9, 1, 7}
       >>> union(s1, s2, s3)
       {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

       @param args: Arbitrary number of sets.
       @return: Unified set

LambdaData.intersection

Help on built-in function intersection in module LambdaData:

intersection(...)
    intersection(*args: set) -> set
    Multiple Set Intersection
       Includes all elements that are common to every set passed in.
       If there is no intersection, it will return the empty set.
       If all sets are the same, it will return the union of all sets.
       Opposite of symmetric_difference.

       DocTests:
       >>> s1 = {0, 2, 4, 6, 8}
       >>> s2 = {1, 2, 3, 4, 5}
       >>> s3 = {2, 8, 9, 1, 7}
       >>> intersection(s1, s2, s3)
       {2}

       @param args: Arbitrary number of sets.
       @return: Set of common elements

LambdaData.difference

Help on built-in function difference in module LambdaData:

difference(...)
    difference(*args: set) -> set
    Multiple Set Difference
       Includes every element in the first set that isn't in one of the others.
       If there is no difference, it will return the empty set.

       DocTests:
       >>> s1 = {0, 2, 4, 6, 8}
       >>> s2 = {1, 2, 3, 4, 5}
       >>> s3 = {2, 8, 9, 1, 7}
       >>> difference(s1, s2, s3)
       {0, 6}

       @param args: Arbitrary number of sets.
       @return: Difference between the first set and the rest.

LambdaData.symmetric_difference

Help on built-in function symmetric_difference in module LambdaData:

symmetric_difference(...)
    symmetric_difference(*args: set) -> set
    Multiple Set Symmetric Difference
       Includes all elements that are not common to every set passed in.
       If there is no intersection, it will return the union of all sets.
       If all sets are the same, it will return the empty set.
       Opposite of intersection.

       DocTests:
       >>> s1 = {0, 2, 4, 6, 8}
       >>> s2 = {1, 2, 3, 4, 5}
       >>> s3 = {2, 8, 9, 1, 7}
       >>> symmetric_difference(s1, s2, s3)
       {0, 1, 3, 4, 5, 6, 7, 8, 9}

       @param args: Arbitrary number of sets.
       @return: Symmetric difference considering all sets.

Pandas Helpers

LambdaData.value_span

Help on built-in function value_span in module LambdaData:

value_span(...)
    value_span(data: pd.Series, start, stop)
    Value Span
       Returns a conditional matching values in the inclusive range [start, stop]

       @param data: Series
       @param start: Sortable Value, lower bound
       @param stop: Sortable Value, upper bound
       @return: Conditional

LambdaData.star_cat_row

Help on built-in function star_cat_row in module LambdaData:

star_cat_row(...)
    star_cat_row(*args: pd.DataFrame, crop=False, reset_index=True)
    Star Cat Rows
       Concatenates two or more pandas data frames in the order you provide them.

       @param args: Two or more DataFrames
       @param crop: Boolean to indicate join type, default is False
           True: inner join, this will crop columns that are not in all data frames
           False: outer join, this will fill missing columns with NaN
       @param reset_index: Boolean to indicate resetting the index, default is True
       @return: DataFrame

LambdaData.star_cat_col

Help on built-in function star_cat_col in module LambdaData:

star_cat_col(...)
    star_cat_col(*args: pd.DataFrame, crop=False, reset_index=False)
    Star Cat Cols
       Concatenates two or more pandas data frames in the order you provide them.

       @param args: Two or more DataFrames
       @param crop: Boolean to indicate join type, default is False
           True: inner join, this will crop columns that are not in all data frames
           False: outer join, this will fill missing columns with NaN
       @param reset_index: Boolean to indicate resetting the index, default is True
       @return: DataFrame

LambdaData.StateLookup

Help on class StateLookup in module LambdaData:

class StateLookup(builtins.object)
 |  Class methods defined here:
 |  
 |  abbrev_lookup(state_name: 'unicode') -> 'unicode' from builtins.type
 |      StateLookup.abbrev_lookup(cls, unicode state_name: str) -> str
 |      State Abbreviation Lookup Utility
 |      
 |             DocTests:
 |             >>> StateLookup.abbrev_lookup('Texas')
 |             'TX'
 |      
 |             @param state_name: the state name
 |             @return string: abbreviation
 |  
 |  name_lookup(state_abbrev: 'unicode') -> 'unicode' from builtins.type
 |      StateLookup.name_lookup(cls, unicode state_abbrev: str) -> str
 |      State Name Lookup Utility
 |      
 |             DocTests:
 |             >>> StateLookup.name_lookup('CA')
 |             'California'
 |      
 |             @param state_abbrev: state abbreviation
 |             @return string: state name
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  __dict__
 |      dictionary for instance variables (if defined)
 |  
 |  __weakref__
 |      list of weak references to the object (if defined)

Randomizers

LambdaData.random_range

Help on built-in function random_range in module LambdaData:

random_range(...)
    random_range(start: int, stop: int = 0, step: int = 1) -> int
    Random Range: Flat uniform distribution.
       The order of the inputs `start` and `stop` are interchangeable.
       Conceptually: A = min(start, stop), B = max(start, stop), C = step
       The sign of the step parameter controls the phase of the output.
       Negative stepping will flip the inclusively of the distribution.
       In other words: a negative step means to count down, not up.

       DocTests:
       >>> all(random_range(10) in range(10) for _ in range(100))
       True
       >>> all(random_range(1, 10) in range(1, 10) for _ in range(100))
       True
       >>> all(random_range(1, 10, 2) in range(1, 10, 2) for _ in range(100))
       True
       >>> random_range(0)
       0

       @param start: Typically the lower bound. Inclusive.
       @param stop: Typically the upper limit. Exclusive.
       @param step: Size of the increments within the distribution.
       @return: Random Integer in range [A, B) by C, or (A, B] by |C| for -C

LambdaData.shuffle

Help on built-in function shuffle in module LambdaData:

shuffle(...)
    shuffle(array: List[Any])
    Shuffle: Knuth B Algorithm
       Destructive, in-place shuffle.
       Reverse Order Random Swap Back.

       @param array: List of values to be shuffled.

LambdaData.TruffleShuffle

Help on class TruffleShuffle in module LambdaData:

class TruffleShuffle(builtins.object)
 |  TruffleShuffle(collection: Iterable[Any])
 |  
 |  Truffle Shuffle
 |  Produces random values from a collection with a Wide Uniform Distribution.
 |  
 |  @param collection :: Collection of Values. Any list-like object, a Set is
 |      recommended but not required.
 |  @return :: Callable Object. `Callable() -> Value`
 |      @return :: Random Value, wide distribution
 |  
 |  Wide Uniform Distribution: "Wide" refers to the average distance between
 |  consecutive occurrences of the same value. The average width of the output
 |  distribution will naturally scale up with the size of the collection.
 |  The goal of this type of distribution is to keep the output sequence free
 |  of clumps or streaks of the same value, while maintaining randomness and
 |  uniform probability. This is not the same as a flat uniform distribution.
 |  The two distributions over time will be statistically similar for any
 |  given set, but the repetitiveness of the output sequence will be
 |  very different.
 |  
 |  Methods defined here:
 |  
 |  __call__(self, *args, **kwargs) -> Any
 |      TruffleShuffle.__call__(self, *args, **kwargs) -> Any
 |  
 |  __init__(self, collection: Iterable[Any])
 |      TruffleShuffle.__init__(self, collection: Iterable[Any])
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  data
 |  
 |  rotate_size

Tests

$ python LambdaDataTests/LDTests.py
8 items had no tests:
    LambdaData
    LambdaData.TruffleShuffle
    LambdaData.TruffleShuffle.__call__
    LambdaData.TruffleShuffle.__init__
    LambdaData.shuffle
    LambdaData.star_cat_col
    LambdaData.star_cat_row
    LambdaData.value_span
68 items passed all tests:
   2 tests in LambdaData.accumulate
   2 tests in LambdaData.add_one
   3 tests in LambdaData.adjacent_difference
   4 tests in LambdaData.all_of
   4 tests in LambdaData.any_of
   4 tests in LambdaData.difference
   2 tests in LambdaData.exclusive_scan
   5 tests in LambdaData.fork
   3 tests in LambdaData.generate
   2 tests in LambdaData.generate_n
   2 tests in LambdaData.inclusive_scan
   2 tests in LambdaData.inner_product
   4 tests in LambdaData.intersection
   4 tests in LambdaData.iota
   5 tests in LambdaData.is_even
   5 tests in LambdaData.is_odd
   2 tests in LambdaData.matrix_multiply
   2 tests in LambdaData.min_max
   4 tests in LambdaData.none_of
   2 tests in LambdaData.partial_sum
   2 tests in LambdaData.partition
   2 tests in LambdaData.product
   4 tests in LambdaData.random_range
   4 tests in LambdaData.reduce
   3 tests in LambdaData.square
   3 tests in LambdaData.star_product
   4 tests in LambdaData.star_sum
   2 tests in LambdaData.state_name_lookup
   4 tests in LambdaData.symmetric_difference
   2 tests in LambdaData.transform
   2 tests in LambdaData.transform_reduce
   4 tests in LambdaData.transposed_sums
   4 tests in LambdaData.union
   7 tests in LambdaData.zip_transform
220 tests in 76 items.
220 passed and 0 failed.
Test passed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LambdaData-0.1.16.tar.gz (135.5 kB view details)

Uploaded Source

Built Distribution

LambdaData-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl (142.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file LambdaData-0.1.16.tar.gz.

File metadata

  • Download URL: LambdaData-0.1.16.tar.gz
  • Upload date:
  • Size: 135.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.4

File hashes

Hashes for LambdaData-0.1.16.tar.gz
Algorithm Hash digest
SHA256 a88d300fb64916d076d0797f10da6cbd576ffef4e041f3e25b71273301aba896
MD5 59bd3b20648ad121e317905cf69c35b7
BLAKE2b-256 1929ec71452032b99c6803a29043a15f0646d3726d5c37f70fee268500e72931

See more details on using hashes here.

File details

Details for the file LambdaData-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: LambdaData-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 142.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.4

File hashes

Hashes for LambdaData-0.1.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c406f9356a726b150b44cc4544b93a44381aef3b02572b7befc972dbf342e07
MD5 312c93874912d430604a43849f065e75
BLAKE2b-256 7ddd04a441dab49a07407360071372bd0d2659f0c48005565f53600ad19ab5a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page