Skip to main content

Python toolkit to support fundamental energy limits and reversible computing research

Project description

Landauer

Python toolkit to support fundamental energy limits and reversible computing research

Build Status PyPI version

Install

Installing this Python package:

python3 -m pip install landauer

Modules

Parse

Parses a hardware description file (written using a Verilog subset) and returns an and-inverter graph (as an instance of NetworkX DiGraph):

import landauer.parse as parse
half_adder = '''
    module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
'''
aig = parse.parse(half_adder)
print(aig)
# DiGraph with 8 nodes and 10 edges

You can enable majority-gates support using the switch --majority_support. In this case the output is an AIG superset where a node with three inputs (e.g. a, b, and c) is equivalent to (a & b) | (a & c) | (b & c).

Verilog subset supported: Single module description. Restricted to input, output, and wire declarations (registers nor arrays are supported). Usage of identifiers before their proper declaration is currently not supported.

You can also use this module via the command line. The output is a JSON-serialized NetworkX DiGraph in an adjacency format:

cat << EOF | python -m landauer.parse --stdin
module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
EOF
# {"directed": true, "multigraph": false, "graph": [], "nodes": [{"id": "a"}, {"id": 1}, {"id": "b"}, {"id": 2}, {"id": 3}, {"id": "sum"}, {"id": 4}, {"id": "cout"}], "adjacency": [[{"inverter": false, "id": 1}, {"inverter": true, "id": 2}, {"inverter": false, "id": 4}], [{"inverter": true, "id": 3}], [{"inverter": true, "id": 1}, {"inverter": false, "id": 2}, {"inverter": false, "id": 4}], [{"inverter": true, "id": 3}], [{"inverter": true, "id": "sum"}], [], [{"inverter": false, "id": "cout"}], []]}

Simulate

Simulates the design for all possible inputs and calculates the entropy for some specific signal sets. We can list the following sets for each gate: inputs, output, and every output-input combination.

import landauer.parse as parse
import landauer.simulate as simulate

half_adder = '''
    module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
'''
simulation = simulate.simulate(parse.parse(half_adder))
print(simulation)
# {frozenset({'b', 'a'}): 2.0, frozenset({1}): 0.8112781244591328, frozenset({1, 'b'}): 1.5, frozenset({1, 'a'}): 1.5, frozenset({1, 'b', 'a'}): 2.0, frozenset({2}): 0.8112781244591328, frozenset({2, 'b'}): 1.5, frozenset({2, 'a'}): 1.5, frozenset({2, 'b', 'a'}): 2.0, frozenset({4}): 0.8112781244591328, frozenset({'b', 4}): 1.5, frozenset({4, 'a'}): 1.5, frozenset({'b', 4, 'a'}): 2.0, frozenset({1, 2}): 1.5, frozenset({3}): 1.0, frozenset({1, 3}): 1.5, frozenset({2, 3}): 1.5, frozenset({1, 2, 3}): 1.5}

The output is a Python dictionary where the key is the signal set (as a Python frozenset), and the value is the entropy (in bits).

You can also use this module via the command line:

cat << EOF | python -m landauer.parse --stdin | python -m landauer.simulate --stdin
module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
EOF
# [{"variables": ["a", "b"], "entropy": 2.0}, {"variables": [1], "entropy": 0.8112781244591328}, {"variables": [1, "a"], "entropy": 1.5}, {"variables": [1, "b"], "entropy": 1.5}, {"variables": [1, "a", "b"], "entropy": 2.0}, {"variables": [2], "entropy": 0.8112781244591328}, {"variables": [2, "a"], "entropy": 1.5}, {"variables": [2, "b"], "entropy": 1.5}, {"variables": [2, "a", "b"], "entropy": 2.0}, {"variables": [4], "entropy": 0.8112781244591328}, {"variables": ["a", 4], "entropy": 1.5}, {"variables": [4, "b"], "entropy": 1.5}, {"variables": ["a", 4, "b"], "entropy": 2.0}, {"variables": [1, 2], "entropy": 1.5}, {"variables": [3], "entropy": 1.0}, {"variables": [1, 3], "entropy": 1.5}, {"variables": [2, 3], "entropy": 1.5}, {"variables": [1, 2, 3], "entropy": 1.5}]

Evaluate

Calculates the total entropy loss and losses for each gate given circuit and its simulation data.

import landauer.parse as parse
import landauer.simulate as simulate
import landauer.evaluate as evaluate

half_adder = '''
    module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
'''
aig = parse.parse(half_adder)
simulation = simulate.simulate(aig)
entropy = evaluate.evaluate(aig, simulation)
print(entropy)
# {'gates': {1: 1.188721875540867, 2: 1.188721875540867, 3: 0.5, 4: 1.188721875540867}, 'total': 4.066165626622601}

You may provide an optimized circuit instead (check Naive module below). However, you should provide the simulation result from the original circuit.

You can also use this module via the command line:

cat << EOF > half_adder.v  
module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
EOF
python -m landauer.parse --file half_adder.v > half_adder.json
python -m landauer.simulate --file half_adder.v > simulation.json
python -m landauer.evaluate simulation.json --file half_adder.json
# {"total": 4.066165626622601, "gates": [{"gate": 1, "loss": 1.188721875540867}, {"gate": 2, "loss": 1.188721875540867}, {"gate": 3, "loss": 0.5}, {"gate": 4, "loss": 1.188721875540867}]}

Naive

Optimizes the circuit using the heuristics from "CHAVES, J. et all. Designing Partially Reversible Field-Coupled Nanocomputing Circuits. IEEE Transactions on Nanotechnology, Volume 18, 2019." There are two strategies: The first one is more conservative and doesn't change the circuit depth (delay-oriented). The second one is more aggressive and may change the circuit depth. However, this last one (energy-oriented) leverages better energy optimization.

import landauer.parse as parse
import landauer.simulate as simulate
import landauer.evaluate as evaluate
import landauer.naive as naive

half_adder = '''
    module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
'''

aig = parse.parse(half_adder)
simulation = simulate.simulate(aig)
print(evaluate.evaluate(aig, simulation))
# 4.066165626622601

delay_oriented = naive.naive(aig, naive.Strategy.DELAY_ORIENTED)
print(evaluate.evaluate(delay_oriented, simulation))
# 4.066165626622601

energy_oriented = naive.naive(aig, naive.Strategy.ENERGY_ORIENTED)
print(evaluate.evaluate(energy_oriented, simulation))
# 1.688721875540867

Please notice that the delay-oriented strategy couldn't find any opportunity to propagate inputs (to avoid information/entropy losses). On the other hand, the energy-oriented heuristic reduced the entropy losses from 4.07 to 1.69.

You can also use this module via command line. The output is a JSON-serialized NetworkX MultiDiGraph in an adjacency format.

cat << EOF > half_adder.v  
module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
EOF
python -m landauer.parse --file half_adder.v > half_adder.json
python -m landauer.simulate --file half_adder.v > simulation.json
python -m landauer.evaluate simulation.json --file half_adder.json
python -m landauer.naive energy_oriented --file half_adder.json
# {"directed": true, "multigraph": true, "graph": [], "nodes": [{"level": 0, "id": "a"}, {"level": 1, "id": 1}, {"level": 0, "id": "b"}, {"level": 2, "id": 2}, {"level": 3, "id": 3}, {"level": 4, "id": "sum"}, {"level": 3, "id": 4}, {"level": 4, "id": "cout"}], "adjacency": [[{"inverter": false, "id": 1, "attributes": {"color": "#0173b2"}, "key": 0}], [{"inverter": true, "id": 3, "key": 0}, {"forward": true, "inverter": true, "attributes": {"color": "#0173b2"}, "id": 2, "key": "a"}, {"forward": true, "inverter": true, "attributes": {"color": "#56b4e9"}, "id": 2, "key": "b"}], [{"inverter": true, "id": 1, "attributes": {"color": "#56b4e9"}, "key": 0}], [{"inverter": true, "id": 3, "key": 0}, {"forward": true, "inverter": true, "attributes": {"color": "#0173b2"}, "id": 4, "key": "a"}, {"forward": true, "inverter": false, "attributes": {"color": "#56b4e9"}, "id": 4, "key": "b"}], [{"inverter": true, "id": "sum", "key": 0}], [], [{"inverter": false, "id": "cout", "key": 0}], []]}

Graph

Generates a DOT file given an and-inverter graph. There are two visualization modes: default and paper. Input propagations are represented by colored edges. Inverters are represented by dashed edges.

import landauer.parse as parse
import landauer.naive as naive
import landauer.graph as graph

half_adder = '''
    module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
'''

aig = parse.parse(half_adder)
energy_oriented = naive.naive(aig, naive.Strategy.ENERGY_ORIENTED)
print(graph.default(energy_oriented))
# digraph {
#	a
#	1
#	b
#	2
#	3
#	sum
#	4
#	cout
#	a -> 1 [color="#0173b2" style=solid]
#	1 -> 3 [style=dashed]
#	1 -> 2 [color="#0173b2" style=dashed]
#	1 -> 2 [color="#56b4e9" style=dashed]
#	b -> 1 [color="#56b4e9" style=dashed]
#	2 -> 3 [style=dashed]
#	2 -> 4 [color="#0173b2" style=dashed]
#	2 -> 4 [color="#56b4e9" style=solid]
#	3 -> sum [style=dashed]
#	4 -> cout [style=solid]
#}

You can call the method show to display the graph using matplotlib:

graph.show(graph.default(energy_oriented))

graph visualization (default)

You can also use this module via command line:

cat << EOF | python -m landauer.parse --stdin | python -m landauer.naive energy_oriented --stdin | python -m landauer.graph --type paper --stdin --show
module half_adder (a, b, sum, cout);
        input a, b;
        output sum, cout;

        assign sum = a ^ b;
        assign cout = a & b;
    endmodule
EOF

graph visualization (paper)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

landauer-0.0.1.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

landauer-0.0.1-py3-none-any.whl (17.8 kB view details)

Uploaded Python 3

File details

Details for the file landauer-0.0.1.tar.gz.

File metadata

  • Download URL: landauer-0.0.1.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for landauer-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8103b6e69dd091b4c18ead16d2eb71202cf3be115ab3ff85f3e2f1dcd51e5304
MD5 e552a980426030429dc009e59f80da25
BLAKE2b-256 d64ecd82a99bbb2e01b7df6ae506783e1cf1728ad00dfdf43ed08dd0f70efbbf

See more details on using hashes here.

File details

Details for the file landauer-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: landauer-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 17.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for landauer-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dd10788c5039f222cd64fd2693b89e15b8bd66c097d0669d45ead3f9f8a4ce5f
MD5 06bb0b0878df7224d4f01be8187872de
BLAKE2b-256 1f85893372d9938ad646904af36777d01b55e374c85c2c9c3d5b76ac9cf23982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page