Skip to main content

A goblin tool for the estimation of emissions from various land cover types

Project description

🏘️🌳🌲🌽🍀 Land cover LCA for the GOBLIN model (Ireland only)

license python Code style: black

Based on the GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) land use tool module

The package takes outputs from the landcover_assignment module (land use data and transition matrix) and produces emissions inventory for cropland, grassland, forest and wetlands

Currently parameterised for Ireland, the historic land uses and areas of organic and mineral soil are taken from the National Invetory CRF Tables

Final result are pandas dataframes that can be read by numerous GOBLIN packages.

Installation

Install from git hub.

pip install "landcover_lca@git+https://github.com/GOBLIN-Proj/landcover_lca.git@main" 

Install from PyPI

pip install landcover_lca

Usage

The baseline year represents the scenario baseline. The target year is the end year for each one of the scenarios.

Transition dataframe is the land use transition matrix, and the land use dataframe is the areas for each land use.

The land use dataframe includes proportions for area mineral, organic, rewetted, burnt, and peat extraction.

Annual trade data has been used for horticultural peat exports.

from landcover_lca.models import load_transition_matrix, load_land_use_data
import landcover_lca.lca_emission as lca
import pandas as pd
import os


def main():

    data_dir = "./data"

    ef_country = "ireland"
    baseline = 2020
    target = 2050

    transition = pd.read_csv(os.path.join(data_dir, "transition.csv"), index_col = 0)
    land_uses = pd.read_csv(os.path.join(data_dir, "land_uses.csv"), index_col = 0)

            
    transition_matrix = load_transition_matrix(transition, ef_country, baseline, target)
        
    land_use_data = load_land_use_data(land_uses, baseline)

    baseline_index = -1
    base = -baseline

    emission_df = pd.DataFrame(
        columns=["CO2", "CH4", "N2O", "CO2e"],
        index=pd.MultiIndex.from_product(
            [
                # list(scenario_list),
                [baseline_index],
                ["cropland", "grassland", "forest", "wetland", "total"],
                [
                    baseline
                ],
            ],
            names=["scenario", "land_use", "year"],
        ),
    )

    emission_df.index.levels[0].astype(int)

    emission_df.loc[
            (
                baseline_index,
                "total",
                baseline,
            ),
            "CH4",
        ] = (
            lca.total_ch4_emission(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )

        )
    emission_df.loc[
            (
                baseline_index,
                "total",
                baseline,
            ),
            "CO2",
        ] = lca.total_co2_emission(
            land_use_data[base],
            land_use_data[base],
            transition_matrix[base],
            ef_country
        ) 

    emission_df.loc[
            (
                baseline_index,
                "total",
                baseline,
            ),
            "N2O",
        ] = (
            lca.total_n2o_emission(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
        )
    
    emission_df.loc[
            (
                baseline_index,
                "cropland",
                baseline
            ),
            "CO2",
        ] = lca.total_co2_emission_cropland(
            land_use_data[base],
            land_use_data[base],
            transition_matrix[base],
            ef_country
        )

    emission_df.loc[
            (
                baseline_index,
                "cropland",
                baseline,
            ),
            "CH4",
        ] = lca.total_ch4_emission_cropland(
            ef_country,
            transition_matrix[base],
            land_use_data[base],
            land_use_data[base]
                
    
            )
    
    emission_df.loc[
            (
                baseline_index,
                "cropland",
                baseline,
            ),
            "N2O",
        ] = (
            lca.total_n2o_emission_cropland(
                ef_country,
                transition_matrix[base],
                land_use_data[base],
                land_use_data[base],
            )
        )
    
    
    emission_df.loc[
            (
                baseline_index,
                "grassland",
                baseline,
            ),
            "CO2",
        ] = (
            lca.total_co2_emission_grassland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
        )
    
    emission_df.loc[
            (
                baseline_index,
                "grassland",
                baseline,
            ),
            "CH4",
        ] = (
            lca.total_ch4_emission_grassland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
            
        )
    
    emission_df.loc[
            (
                baseline_index,
                "grassland",
                baseline
            ),
            "N2O",
        ] = (
            lca.total_n2o_emission_grassland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
        )
    emission_df.loc[
            (
                baseline_index,
                "wetland",
                baseline,
            ),
            "CO2",
        ] = (
            lca.total_co2_emission_wetland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country,
            ) + lca.horticulture_co2_peat_export(ef_country, baseline, baseline)
        )
    emission_df.loc[
            (
                baseline_index,
                "wetland",
                baseline,
            ),
            "CH4",
        ] = (
            lca.total_ch4_emission_wetland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
        )
    emission_df.loc[
            (
                baseline_index,
                "wetland",
                baseline,
            ),
            "N2O",
        ] = (
            lca.total_n2o_emission_wetland(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country,
            )
        )
    emission_df.loc[
            (
                baseline_index,
                "forest",
                baseline,
            ),
            "CO2",
        ] = (
            lca.total_co2_emission_forest(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country,

            )
            
        ) 
    emission_df.loc[
            (
                baseline_index,
                "forest",
                baseline
            ),
            "CH4",
        ] = (
            lca.total_ch4_emission_forest(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )
           
        )
    emission_df.loc[
            (
                baseline_index,
                "forest",
                baseline
            ),
            "N2O",
        ] = (
            lca.total_n2o_emission_forest(
                land_use_data[base],
                land_use_data[base],
                transition_matrix[base],
                ef_country
            )

        )

    emission_df["CO2e"] = (
            emission_df["CO2"]
            + (emission_df["CH4"] * 28)
            + (emission_df["N2O"] * 295)
        )
    print(emission_df)

if __name__ == "__main__":
    main()

    

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

landcover_lca-0.2.1.tar.gz (65.7 kB view details)

Uploaded Source

Built Distribution

landcover_lca-0.2.1-py3-none-any.whl (76.1 kB view details)

Uploaded Python 3

File details

Details for the file landcover_lca-0.2.1.tar.gz.

File metadata

  • Download URL: landcover_lca-0.2.1.tar.gz
  • Upload date:
  • Size: 65.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-113-generic

File hashes

Hashes for landcover_lca-0.2.1.tar.gz
Algorithm Hash digest
SHA256 c1db70a2e187a048848f3a7da2bd48db141e5f9ac70fec7dc2922e4acd0fba0b
MD5 0c572082714f492ac3a4d756abec18c2
BLAKE2b-256 c0668dd5e309c77c7a00c3472cd7c35e65f98630e7059f7580ceca6ce47f92f6

See more details on using hashes here.

File details

Details for the file landcover_lca-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: landcover_lca-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 76.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-113-generic

File hashes

Hashes for landcover_lca-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 acc6bbb36ae8d928979e8d65ec4ec9665c9fbf2358e0567015eb836a2d06154e
MD5 a4eca5a99ceab3f2a4d541101216655d
BLAKE2b-256 41cb640f0946a6121bc4e6306bb3713434b8f6047ea25fc6db27487ef155f445

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page