Agentic LLM vulnerability scanner
Project description
Langalf
The open-source Agentic LLM Vulnerability Scanner .
Learn more »
About the Project 🧙
LLM threat vectors scanner
Prebuilt Datasets of Prompts Focused on OWASP top 10 LLM Integration under 1 min |
Features
- Comprehensive Threat Detection 🛡️: Scans for a wide array of LLM vulnerabilities including prompt injection, jailbreaking, hallucinations, biases, and other malicious exploitation attempts.
- OWASP Top 10 for LLMs scan: to test the list of the most critical LLM vulnerabilities.
- Privacy-centric Architecture 🔒: Ensures that all data scanning and analysis occur on-premise or in a local environment, with no external data transmission, maintaining strict data privacy.
- Comprehensive Reporting Tools 📊: Offers detailed reports of vulnerability, helping teams to quickly understand and respond to security incidents.
- Customizable Rule Sets 🛠️: Allows users to define custom attack rules and parameters to meet specific prompt attacks needs and compliance standards.
Note: Please be aware that Langalf is designed as a safety scanner tool and not a foolproof solution. It cannot guarantee complete protection against all possible threats.
📦 Installation
To get started with Langalf, simply install the package using pip:
pip install langalf
⛓️ Quick Start
langalf
2024-04-13 13:21:31.157 | INFO | langalf.probe_data.data:load_local_csv:273 - Found 1 CSV files
2024-04-13 13:21:31.157 | INFO | langalf.probe_data.data:load_local_csv:274 - CSV files: ['prompts.csv']
INFO: Started server process [18524]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8718 (Press CTRL+C to quit)
python -m langalf
# or
langalf --help
langalf --port=PORT --host=HOST
LLM kwargs
Langalf uses plain text HTTP spec like:
POST https://api.openai.com/v1/chat/completions
Authorization: Bearer sk-xxxxxxxxx
Content-Type: application/json
{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "<<PROMPT>>"}],
"temperature": 0.7
}
Where <<PROMPT>>
will be replaced with the actual attack vector during the scan, insert the Bearer XXXXX
header value with your app credentials.
Adding LLM integration templates
TBD
....
Adding own dataset
To add your own dataset you can place one or multiples csv files with prompt
column, this data will be loaded on langalf
startup
2024-04-13 13:21:31.157 | INFO | langalf.probe_data.data:load_local_csv:273 - Found 1 CSV files
2024-04-13 13:21:31.157 | INFO | langalf.probe_data.data:load_local_csv:274 - CSV files: ['prompts.csv']
Extending dataset collections
- Add new metadata to langalf.probe_data.REGISTRY
{
"dataset_name": "markush1/LLM-Jailbreak-Classifier",
"num_prompts": 1119,
"tokens": 19758,
"approx_cost": 0.0,
"source": "Hugging Face Datasets",
"selected": True,
"dynamic": False,
"url": "https://huggingface.co/markush1/LLM-Jailbreak-Classifier",
},
and implement loader into
@dataclass
class ProbeDataset:
dataset_name: str
metadata: dict
prompts: list[str]
tokens: int
approx_cost: float
def metadata_summary(self):
return {
"dataset_name": self.dataset_name,
"num_prompts": len(self.prompts),
"tokens": self.tokens,
"approx_cost": self.approx_cost,
}
Dynamic datasets with mutations
One of the current examples uses sampling for the existing preloaded prompt data and applying mutations yielding a new dataset
class Stenography:
fn_library = {
"rot5": stenography_fn.rot5,
"rot13": stenography_fn.rot13,
"base64": stenography_fn.base64_encode,
"mirror": stenography_fn.mirror_words,
"random_case": stenography_fn.randomize_letter_case,
"scramble_words": stenography_fn.scramble_words,
"noise_characters": stenography_fn.insert_noise_characters,
"substitute_with_ascii": stenography_fn.substitute_with_ascii,
"remove_vowels": stenography_fn.remove_vowels,
"zigzag_obfuscation": stenography_fn.zigzag_obfuscation,
}
def __init__(self, prompt_groups: [ProbeDataset]):
self.prompt_groups = prompt_groups
def apply(self):
for prompt_group in self.prompt_groups:
size = len(prompt_group.prompts)
for name, fn in self.fn_library.items():
logger.info(f"Applying {name} to {prompt_group.dataset_name}")
selected_prompts = random.sample(prompt_group.prompts, int(size * 0.25))
prompts = [
f"Follow the instructions in {name}: {fn(p)}"
for p in selected_prompts
]
yield ProbeDataset(
dataset_name=f"stenography.{name}({prompt_group.dataset_name})",
metadata={},
prompts=prompts,
tokens=count_words_in_list(prompts),
approx_cost=0.0,
)
Probe endpoint
In the example of custom integration, we use /v1/self-probe
for the sake of integration testing.
POST https://langalf-preview.vercel.app/v1/self-probe
Authorization: Bearer XXXXX
Content-Type: application/json
{
"prompt": "<<PROMPT>>"
}
This endpoint randomly mimics the refusal of a fake LLM.
@app.post("/v1/self-probe")
def self_probe(probe: Probe):
refuse = random.random() < 0.2
message = random.choice(REFUSAL_MARKS) if refuse else "This is a test!"
message = probe.prompt + " " + message
return {
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1677858242,
"model": "gpt-3.5-turbo-0613",
"usage": {"prompt_tokens": 13, "completion_tokens": 7, "total_tokens": 20},
"choices": [
{
"message": {"role": "assistant", "content": message},
"logprobs": None,
"finish_reason": "stop",
"index": 0,
}
],
}
CI/CD integration
TBD
Documentation
For more detailed information on how to use Langalf, including advanced features and customization options, please refer to the official documentation.
Roadmap and Future Goals
- Expand dataset variety
- Introduce two new attack vectors
- Develop initial attacker LLM
- Complete integration of OWASP Top 10 classification
Note: All dates are tentative and subject to change based on project progress and priorities.
👋 Contributing
Contributions to Langalf are welcome! If you'd like to contribute, please follow these steps:
- Fork the repository on GitHub
- Create a new branch for your changes
- Commit your changes to the new branch
- Push your changes to the forked repository
- Open a pull request to the main Langalf repository
Before contributing, please read the contributing guidelines.
License
Langalf is released under the Apache License v2.
Contact us
🤝 Schedule a 1-on-1 Session
Book a 1-on-1 Session with the founders, to discuss any issues, provide feedback, or explore how we can improve langalf for you.
Repo Activity
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file langalf-0.0.4.tar.gz
.
File metadata
- Download URL: langalf-0.0.4.tar.gz
- Upload date:
- Size: 25.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-1017-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 909841262fd5063e9cf690bb078e034161ab70347ce900bcf1bfcf95eb59e37e |
|
MD5 | 664fdb95fe7d938ab943dd674f2d0318 |
|
BLAKE2b-256 | 9650f752856e34f0ebc8ec65252c95ccbab83b0444fd97205fbdefe581c23019 |