Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.7.tar.gz (73.8 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.7-py3-none-any.whl (87.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.7.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.7.tar.gz
  • Upload date:
  • Size: 73.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.7.tar.gz
Algorithm Hash digest
SHA256 5abf12d7cad5164363008612f906bf27cb85b8f82befe71dbdf27afeda4548eb
MD5 732cabbc3ae22f830a77b5e167782cf5
BLAKE2b-256 39a9aec450d33f04100044871c9b7a227c5560e9d2e8ac06e2f2b38c5a70e8f0

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.7-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f60f5e76ce9b3c175d569d40a7a8e113d3aa9feb8e88d013e6054da36501afef
MD5 e0df14d7fa2355a600f6a6a139eeb318
BLAKE2b-256 3f4c3f60d00fbe294f4ea332c98d9d06f5cce6819427b7b2b08ddebc74da5e58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page