Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.13.tar.gz (62.6 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.13-py3-none-any.whl (76.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.13.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.13.tar.gz
  • Upload date:
  • Size: 62.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_aws-0.1.13.tar.gz
Algorithm Hash digest
SHA256 fda790732a72de4ccec3760dba24db5f9fa5cb8724dfd9676a7d5cf87a9f1a98
MD5 b1215496bcc141cecb5b5dc39bd5cefb
BLAKE2b-256 4b672417357fe9dca313deeea8c96f7060a5a4abe1f17fb364ff3e3433ce95fd

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.13-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 c4db60c8a83b8ff3e66170e0bd646739176fcd1a20a9d0a10828a1e21339af1d
MD5 638724a2f4c16e7399d283329cec0923
BLAKE2b-256 e1bf3f5ae7e8f2c90922ba54463f05f33e932cb09333268f2ef8546112e0ccb0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page