Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.1.18.tar.gz (69.2 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.1.18-py3-none-any.whl (83.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.1.18.tar.gz.

File metadata

  • Download URL: langchain_aws-0.1.18.tar.gz
  • Upload date:
  • Size: 69.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for langchain_aws-0.1.18.tar.gz
Algorithm Hash digest
SHA256 2e59efc95ef6758581b7e769cd610b750c76635c437a4f43c454a14cfab67c64
MD5 a1184ed60eb6e40692efdfac4bedf704
BLAKE2b-256 b4b07c7c2e90170daaaaf232dc16e9271fba2c1772b29926d9dd2e40af3b8ef5

See more details on using hashes here.

File details

Details for the file langchain_aws-0.1.18-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 54c65157c67837cd932a6a8c536b52e2308c4e917bccd187d6f42651943cdd51
MD5 9b4b3605817e231ab479cc6a96ac1ca6
BLAKE2b-256 79811134c1ba46d746a76bf7d9685e28264bf4bd3328bdc7f4d61ad30811c2ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page