Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.0.tar.gz (69.0 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.0-py3-none-any.whl (82.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.0.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.0.tar.gz
  • Upload date:
  • Size: 69.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for langchain_aws-0.2.0.tar.gz
Algorithm Hash digest
SHA256 e357bd1e1b0be985a8b8fb1a001015d9d8930a26941f1184deb93a668154c83a
MD5 88508f12ff2e94de27c6035e4e254515
BLAKE2b-256 11a2ca0c17c6f0a175a398eeb06f7808f842f27d716af5d63a00eefabd5a7eec

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c48ed18d95f161992806ff7dcc68a1da353135d18bbc345dacbb29969c122a74
MD5 587cea6c0c97276a49289d66ca22bba6
BLAKE2b-256 c3813e665a38729181f2d4a499650c77bd479ef6265dee628cac8c8568627414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page