Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.2.tar.gz (70.9 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.2-py3-none-any.whl (84.3 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.2.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.2.tar.gz
  • Upload date:
  • Size: 70.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.2.tar.gz
Algorithm Hash digest
SHA256 38d2ea388c7a05fd4a615f815e5d8fe97b964643f09f95f454f074a03698c3e2
MD5 d8418230310d9953dae6872946381d84
BLAKE2b-256 dafd3325e98c09331d4cca73e643cd7a75edf4f17460fc12ad22b20ab8be54dc

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8f81e77a26361f11739039e097ebc316ed38219961ca649bc5c2ec58648a5d87
MD5 7f322fd88801a57b8ccd0caf62fee587
BLAKE2b-256 ed84231c0d09d1621a1d4e9d1b2c7dfa4ad752ae6daa118eeace56c4f6a3eb58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page