Skip to main content

An integration package connecting AWS and LangChain

Project description

langchain-aws

This package contains the LangChain integrations with AWS.

Installation

pip install -U langchain-aws

All integrations in this package assume that you have the credentials setup to connect with AWS services.

Chat Models

ChatBedrock class exposes chat models from Bedrock.

from langchain_aws import ChatBedrock

llm = ChatBedrock()
llm.invoke("Sing a ballad of LangChain.")

Embeddings

BedrockEmbeddings class exposes embeddings from Bedrock.

from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings()
embeddings.embed_query("What is the meaning of life?")

LLMs

BedrockLLM class exposes LLMs from Bedrock.

from langchain_aws import BedrockLLM

llm = BedrockLLM()
llm.invoke("The meaning of life is")

Retrievers

AmazonKendraRetriever class provides a retriever to connect with Amazon Kendra.

from langchain_aws import AmazonKendraRetriever

retriever = AmazonKendraRetriever(
    index_id="561be2b6d-9804c7e7-f6a0fbb8-5ccd350"
)

retriever.get_relevant_documents(query="What is the meaning of life?")

AmazonKnowledgeBasesRetriever class provides a retriever to connect with Amazon Knowledge Bases.

from langchain_aws import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
    knowledge_base_id="IAPJ4QPUEU",
    retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

retriever.get_relevant_documents(query="What is the meaning of life?")

VectorStores

InMemoryVectorStore class provides a vectorstore to connect with Amazon MemoryDB.

from langchain_aws.vectorstores.inmemorydb import InMemoryVectorStore

vds = InMemoryVectorStore.from_documents(
            chunks,
            embeddings,
            redis_url="rediss://cluster_endpoint:6379/ssl=True ssl_cert_reqs=none",
            vector_schema=vector_schema,
            index_name=INDEX_NAME,
        )

MemoryDB as Retriever

Here we go over different options for using the vector store as a retriever.

There are three different search methods we can use to do retrieval. By default, it will use semantic similarity.

retriever=vds.as_retriever()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_aws-0.2.4.tar.gz (73.6 kB view details)

Uploaded Source

Built Distribution

langchain_aws-0.2.4-py3-none-any.whl (87.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_aws-0.2.4.tar.gz.

File metadata

  • Download URL: langchain_aws-0.2.4.tar.gz
  • Upload date:
  • Size: 73.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_aws-0.2.4.tar.gz
Algorithm Hash digest
SHA256 fc550ca3eb17fd6c4e5605a97b2dfedcfa415abaa39b28bcc273d57c9316d7ec
MD5 7ca1acef35b79b9a041b345957139ff4
BLAKE2b-256 6c0a33f628291e0cd52c05ebbba53835c8f700bbc8db1f701e24b735e1006c81

See more details on using hashes here.

File details

Details for the file langchain_aws-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_aws-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8cdcdcd69710c98d463cc559e98d81449b332643755461905c2729115c4d72e4
MD5 5fbdf8bb95300814da08a3e4dc3a1215
BLAKE2b-256 168c235baf2eec7f5bf8e59f1c9d07e1df0af9ccbd97bbac4e0cb3f49bb3a740

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page