Skip to main content

An integration package connecting Couchbase and LangChain

Project description

langchain-couchbase

This package contains the LangChain integration with Couchbase

Installation

pip install -U langchain-couchbase

Vector Store

CouchbaseVectorStore class enables the usage of Couchbase for Vector Search.

from langchain_couchbase import CouchbaseVectorStore

To use this in an application:

import getpass

# Constants for the connection
COUCHBASE_CONNECTION_STRING = getpass.getpass(
    "Enter the connection string for the Couchbase cluster: "
)
DB_USERNAME = getpass.getpass("Enter the username for the Couchbase cluster: ")
DB_PASSWORD = getpass.getpass("Enter the password for the Couchbase cluster: ")

# Create Couchbase connection object
from datetime import timedelta

from couchbase.auth import PasswordAuthenticator
from couchbase.cluster import Cluster
from couchbase.options import ClusterOptions

auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)
options = ClusterOptions(auth)
cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

vector_store = CouchbaseVectorStore(
    cluster=cluster,
    bucket_name=BUCKET_NAME,
    scope_name=SCOPE_NAME,
    collection_name=COLLECTION_NAME,
    embedding=my_embeddings,
    index_name=SEARCH_INDEX_NAME,
)

See a usage example

LLM Caches

CouchbaseCache

Use Couchbase as a cache for prompts and responses.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseCache(
        cluster=cluster,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
    )
)

CouchbaseSemanticCache

Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore. The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the usage example on how to set up the index.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseSemanticCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

# use any embedding provider...

from langchain_openai.Embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseSemanticCache(
        cluster=cluster,
        embedding = embeddings,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
        index_name=INDEX_NAME,
    )
)

Chat Message History

Use Couchbase as the storage for your chat messages.

See a usage example.

To use the chat message history in your applications:

from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory

message_history = CouchbaseChatMessageHistory(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
session_id="test-session",
)

message_history.add_user_message("hi!")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_couchbase-0.2.3.dev0.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

langchain_couchbase-0.2.3.dev0-py3-none-any.whl (15.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_couchbase-0.2.3.dev0.tar.gz.

File metadata

File hashes

Hashes for langchain_couchbase-0.2.3.dev0.tar.gz
Algorithm Hash digest
SHA256 7e2585fdf40d03c07e8744da3f2bd202da7fbd930da3b78c7cf855dc09d936f7
MD5 fead15ad4fe84bf23f84351036b5e04d
BLAKE2b-256 75e32e888be744e44eb7c70d4b24dfa567a543225cd8d200612b7e05808bf220

See more details on using hashes here.

File details

Details for the file langchain_couchbase-0.2.3.dev0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_couchbase-0.2.3.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 787f189bdc86fb93fe5bdad701712b1b3d150d106a5479dc2570e5a83e72685e
MD5 b4b44bdb36a63455b57ee8833eb7534c
BLAKE2b-256 b4d08949fae54e6eefa7bb831ff55113e88340e437f6ab550cb810564a9ec687

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page