Skip to main content

An integration package connecting Couchbase and LangChain

Project description

langchain-couchbase

This package contains the LangChain integration with Couchbase

Installation

pip install -U langchain-couchbase

Vector Store

CouchbaseVectorStore class enables the usage of Couchbase for Vector Search.

from langchain_couchbase import CouchbaseSearchVectorStore

To use this in an application:

import getpass

# Constants for the connection
COUCHBASE_CONNECTION_STRING = getpass.getpass(
    "Enter the connection string for the Couchbase cluster: "
)
DB_USERNAME = getpass.getpass("Enter the username for the Couchbase cluster: ")
DB_PASSWORD = getpass.getpass("Enter the password for the Couchbase cluster: ")

# Create Couchbase connection object
from datetime import timedelta

from couchbase.auth import PasswordAuthenticator
from couchbase.cluster import Cluster
from couchbase.options import ClusterOptions

auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)
options = ClusterOptions(auth)
cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

vector_store = CouchbaseSearchVectorStore(
    cluster=cluster,
    bucket_name=BUCKET_NAME,
    scope_name=SCOPE_NAME,
    collection_name=COLLECTION_NAME,
    embedding=my_embeddings,
    index_name=SEARCH_INDEX_NAME,
)

See a usage example

LLM Caches

CouchbaseCache

Use Couchbase as a cache for prompts and responses.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseCache(
        cluster=cluster,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
    )
)

CouchbaseSemanticCache

Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore. The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the usage example on how to set up the index.

See a usage example.

To import this cache:

from langchain_couchbase.cache import CouchbaseSemanticCache

To use this cache with your LLMs:

from langchain_core.globals import set_llm_cache

# use any embedding provider...

from langchain_openai.Embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
cluster = couchbase_cluster_connection_object

set_llm_cache(
    CouchbaseSemanticCache(
        cluster=cluster,
        embedding = embeddings,
        bucket_name=BUCKET_NAME,
        scope_name=SCOPE_NAME,
        collection_name=COLLECTION_NAME,
        index_name=INDEX_NAME,
    )
)

Chat Message History

Use Couchbase as the storage for your chat messages.

See a usage example.

To use the chat message history in your applications:

from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory

message_history = CouchbaseChatMessageHistory(
    cluster=cluster,
    bucket_name=BUCKET_NAME,
    scope_name=SCOPE_NAME,
    collection_name=COLLECTION_NAME,
    session_id="test-session",
)

message_history.add_user_message("hi!")

📢 Support Policy

We truly appreciate your interest in this project!
This project is community-maintained, which means it's not officially supported by our support team.

If you need help, have found a bug, or want to contribute improvements, the best place to do that is right here — by opening a GitHub issue.
Our support portal is unable to assist with requests related to this project, so we kindly ask that all inquiries stay within GitHub.

Your collaboration helps us all move forward together — thank you!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_couchbase-0.4.0rc1.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

langchain_couchbase-0.4.0rc1-py3-none-any.whl (28.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_couchbase-0.4.0rc1.tar.gz.

File metadata

File hashes

Hashes for langchain_couchbase-0.4.0rc1.tar.gz
Algorithm Hash digest
SHA256 24f0fb19ea6f35dbad25128775a0aaa4a29481d53e566c34ea3d07f9db688d56
MD5 a7f02b7c9bb23abfa11e6264ff7e44fa
BLAKE2b-256 e8e29651f880381813bc72e58af2b945c86c471d0601099694d95e94efd898a1

See more details on using hashes here.

File details

Details for the file langchain_couchbase-0.4.0rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_couchbase-0.4.0rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 3d04c220da28969b0d4b19de5543eb676cd1773e4437fe006a1632306f473093
MD5 6737027c64e2d9bfee33fed98afe526b
BLAKE2b-256 69cdf6432f43e5732962c820b629eb9c03dd1971d49e132a1ba741431a66f6a9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page