Skip to main content

No project description provided

Project description

🔗 LangChain-GLM

项目介绍

本项目通过langchain的基础组件,实现了完整的支持智能体和相关任务架构。底层采用智谱AI的最新的 GLM-4 All Tools, 通过智谱AI的API接口, 能够自主理解用户的意图,规划复杂的指令,并能够调用一个或多个工具(例如网络浏览器、Python解释器和文本到图像模型)以完成复杂的任务。

all_tools.png

图|GLM-4 All Tools 和定制 GLMs(智能体)的整体流程。

项目结构

包路径 说明
agent_toolkits 平台工具AdapterAllTool适配器, 是一个用于为各种工具提供统一接口的平台适配器工具,目的是在不同平台上实现无缝集成和执行。该工具通过适配特定的平台参数,确保兼容性和一致的输出。
agents 定义AgentExecutor的输入、输出、智能体会话、工具参数、工具执行策略的封装
callbacks 抽象AgentExecutor过程中的一些交互事件,通过事件展示信息
chat_models zhipuai sdk的封装层,提供langchain的BaseChatModel集成,格式化输入输出为消息体
embeddings zhipuai sdk的封装层,提供langchain的Embeddings集成
utils 一些会话工具

快速使用

Python版本支持

正式的 Python (3.8, 3.9, 3.10, 3.11, 3.12)

使用前请设置环境变量ZHIPUAI_API_KEY,值为智谱AI的API Key。

工具使用

  • Set environment variables
import getpass
import os

os.environ["ZHIPUAI_API_KEY"] = getpass.getpass()
from langchain_glm import ChatZhipuAI
llm = ChatZhipuAI(model="glm-4")
  • 定义一些示例工具:
from langchain_core.tools import tool

@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

@tool
def add(first_int: int, second_int: int) -> int:
    "Add two integers."
    return first_int + second_int

@tool
def exponentiate(base: int, exponent: int) -> int:
    "Exponentiate the base to the exponent power."
    return base**exponent
  • 构建chain 绑定工具到语言模型并调用:
from operator import itemgetter
from typing import Dict, List, Union

from langchain_core.messages import AIMessage
from langchain_core.runnables import (
    Runnable,
    RunnableLambda,
    RunnableMap,
    RunnablePassthrough,
)

tools = [multiply, exponentiate, add]
llm_with_tools = llm.bind_tools(tools)
tool_map = {tool.name: tool for tool in tools}


def call_tools(msg: AIMessage) -> Runnable:
    """Simple sequential tool calling helper."""
    tool_map = {tool.name: tool for tool in tools}
    tool_calls = msg.tool_calls.copy()
    for tool_call in tool_calls:
        tool_call["output"] = tool_map[tool_call["name"]].invoke(tool_call["args"])
    return tool_calls


chain = llm_with_tools | call_tools
  • 调用chain
chain.invoke(
    "What's 23 times 7, and what's five times 18 and add a million plus a billion and cube thirty-seven"
)

代码解析使用示例

  • 创建一个代理执行器 我们的glm-4-alltools的模型提供了平台工具,通过ZhipuAIAllToolsRunnable,你可以非常方便的设置了一个执行器来运行多个工具。

code_interpreter:使用sandbox指定代码沙盒环境, 默认 = auto,即自动调用沙盒环境执行代码。 设置 sandbox = none,不启用沙盒环境。

web_browser:使用web_browser指定浏览器工具。 drawing_tool:使用drawing_tool指定绘图工具。

from langchain_glm.agents.zhipuai_all_tools import ZhipuAIAllToolsRunnable
agent_executor = ZhipuAIAllToolsRunnable.create_agent_executor(
    model_name="glm-4-alltools",
    tools=[
        {"type": "code_interpreter", "code_interpreter": {"sandbox": "none"}},
        {"type": "web_browser"},
        {"type": "drawing_tool"},
        multiply, exponentiate, add
    ],
)
  • 执行agent_executor并打印结果 这部分使用代理来运行一个Shell命令,并在结果出现时打印出来。它检查结果的类型并打印相关信息。 这个invoke返回一个异步迭代器,可以用来处理代理的输出。 你可以多次调用invoke方法,每次调用都会返回一个新的迭代器。 ZhipuAIAllToolsRunnable会自动处理状态保存和恢复,一些状态信息会被保存实例中 你可以通过callback属性获取intermediate_steps的状态信息。
from langchain_glm.agents.zhipuai_all_tools.base import (
    AllToolsAction, 
    AllToolsActionToolEnd,
    AllToolsActionToolStart,
    AllToolsFinish, 
    AllToolsLLMStatus
)
from langchain_glm.callbacks.agent_callback_handler import AgentStatus


chat_iterator = agent_executor.invoke(
    chat_input="看下本地文件有哪些,告诉我你用的是什么文件,查看当前目录"
)
async for item in chat_iterator:
    if isinstance(item, AllToolsAction):
        print("AllToolsAction:" + str(item.to_json()))
    elif isinstance(item, AllToolsFinish):
        print("AllToolsFinish:" + str(item.to_json()))
    elif isinstance(item, AllToolsActionToolStart):
        print("AllToolsActionToolStart:" + str(item.to_json()))
    elif isinstance(item, AllToolsActionToolEnd):
        print("AllToolsActionToolEnd:" + str(item.to_json()))
    elif isinstance(item, AllToolsLLMStatus):
        if item.status == AgentStatus.llm_end:
            print("llm_end:" + item.text)

集成demo

我们提供了一个集成的demo,可以直接运行,查看效果。

  • 安装依赖
fastapi = "~0.109.2"
sse_starlette = "~1.8.2" 
uvicorn = ">=0.27.0.post1"
# webui
streamlit = "1.34.0"
streamlit-option-menu = "0.3.12"
streamlit-antd-components = "0.3.1"
streamlit-chatbox = "1.1.12.post4"
streamlit-modal = "0.1.0"
streamlit-aggrid = "1.0.5"
streamlit-extras = "0.4.2"
python tests/assistant/server/server.py
python tests/assistant/start_chat.py

展示

https://github.com/MetaGLM/langchain-zhipuai/assets/16206043/06863f9c-cd03-4a74-b76a-daa315718104

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_glm-0.0.2.tar.gz (37.2 kB view details)

Uploaded Source

Built Distribution

langchain_glm-0.0.2-py3-none-any.whl (50.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_glm-0.0.2.tar.gz.

File metadata

  • Download URL: langchain_glm-0.0.2.tar.gz
  • Upload date:
  • Size: 37.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_glm-0.0.2.tar.gz
Algorithm Hash digest
SHA256 48a05cf87d12a580ab4806c734791d2230617c41a4a4c8670f5644b8552b60ad
MD5 6233621c6a0223c61bd6ed5c4d630994
BLAKE2b-256 ae8ea2e3d18d584a047d71c2bfab4c0460322efdc99e12a2d8a1cc746782661c

See more details on using hashes here.

File details

Details for the file langchain_glm-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_glm-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a80e2ae827cf6acdfb247bcc2ee4dccf186069af37bb94dd9132d329736a3ebc
MD5 008dda13adbf04ad9466b5349271de79
BLAKE2b-256 a1f55d106f0ec6947f732dd8f3bdc87b598850a33f0dc85ffd7a554eefe7f388

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page