Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.6.tar.gz (75.2 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-2.0.6-py3-none-any.whl (89.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-2.0.6.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.6.tar.gz
Algorithm Hash digest
SHA256 cc9c3a99b8406ec41956172ac260d5d00a377539cda88416da2a186f061e4f0a
MD5 8202e4c73f5b14376ef7dffb882d9738
BLAKE2b-256 5a289481e1b1ffc0681a6a42c6d07b3b68d253ce80dd4ddc972323cdbd70a661

See more details on using hashes here.

Provenance

File details

Details for the file langchain_google_vertexai-2.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 1de299193ae40c0cd54d564b1906f92910731e4942adef926c539b94a784e370
MD5 ad835535e2b077dc0d025c4a97b702a0
BLAKE2b-256 52626fff39d11da7099b48b974320b8c01949b9318a8e26c192d282bed5e6909

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page