Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.7.tar.gz (75.1 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-2.0.7-py3-none-any.whl (89.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-2.0.7.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.7.tar.gz
Algorithm Hash digest
SHA256 66d122c34f44fb87845f704f4906ac9c5cc0aa34be65eaf9ff61ba73956e4aee
MD5 c8518efb5d0df98b2d88d6e11494dffd
BLAKE2b-256 7364b7322fc150f18904e5715cd64d5ba6571190d4337c40b8e5649d4fc84288

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-2.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 9b89d26472020f19a5708ff216cb131d8c36c06af6efb8589bcde30d2327381f
MD5 4b8aafef4e58039ad3931a951f69a90e
BLAKE2b-256 77854773d9fb4fe4712a423d16a1c697d38a3c9a2d96057ece250f80df8ac23a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page