Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.2.2.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.2.2-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.2.2.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.2.2.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for langchain_mistralai-0.2.2.tar.gz
Algorithm Hash digest
SHA256 5ff8d318f7c811a49feba7d15e4dad003957e33b12cdcc733839eae1f04bab9d
MD5 e88eefce6c09b9b3b4976f350fb031ff
BLAKE2b-256 164710153a59681613b26d50c5a8c8d09ff6de07e626e2ca2b9d959fef2ce62a

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2245b3590ba2f8e2f24108d6753f85238c154ca86851499c8431af75b9f7e07d
MD5 4547769b7aae8197a5738899313b6ac1
BLAKE2b-256 117e5fc19264fb7fae020f0562d1614f545d60ecaf93dc5fb8fc778399f2d026

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page