Skip to main content

Langchain-Nexus is a Python library enabling easy integration with diverse language models like ChatGPT and GLM through a unified interface.

Project description

🦜️🔗langchain-nexus

Langchain-Nexus is a versatile Python library that provides a unified interface for interacting with various language models, allowing seamless integration and easy development with models like ChatGPT, GLM, and others.

License: MIT

Quick Install

With pip:

pip install langchain-nexus

🚀 How does LangChain-Nexus help?

📃LLM Model I/O

ChatOpenAI:

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_nexus import ChatOpenAI

chat = ChatOpenAI(temperature=0, openai_api_key="YOUR_API_KEY")
messages = [
    SystemMessage(
        content="You are a helpful assistant that translates English to French."
    ),
    HumanMessage(
        content="Translate this sentence from English to French. I love programming."
    ),
]
chat.invoke(messages)

ChatZhipuAI:

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_nexus import ChatZhipuAI

chat = ChatZhipuAI(temperature=0, zhipuai_api_key="YOUR_API_KEY")
messages = [
    SystemMessage(
        content="You are a helpful assistant that translates English to French."
    ),
    HumanMessage(
        content="Translate this sentence from English to French. I love programming."
    ),
]
chat.invoke(messages)

🧬 Embedding

OpenAIEmbeddings

from langchain_nexus import OpenAIEmbeddings

embeddings_model = OpenAIEmbeddings(openai_api_key="...")

# Embed list of texts
embeddings = embeddings_model.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ]
)
len(embeddings), len(embeddings[0])

# embed_query
embedded_query = embeddings_model.embed_query("What was the name mentioned in the conversation?")
embedded_query[:5]

ZhipuAIEmbeddings

from langchain_nexus import ZhipuAIEmbeddings

embeddings_model = ZhipuAIEmbeddings(zhipuai_api_key="...")

# Embed list of texts
embeddings = embeddings_model.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ]
)
len(embeddings), len(embeddings[0])

# embed_query
embedded_query = embeddings_model.embed_query("What was the name mentioned in the conversation?")
embedded_query[:5]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_nexus-0.0.0.tar.gz (15.3 kB view details)

Uploaded Source

Built Distribution

langchain_nexus-0.0.0-py3-none-any.whl (23.3 kB view details)

Uploaded Python 3

File details

Details for the file langchain_nexus-0.0.0.tar.gz.

File metadata

  • Download URL: langchain_nexus-0.0.0.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.7

File hashes

Hashes for langchain_nexus-0.0.0.tar.gz
Algorithm Hash digest
SHA256 21b6ba79bd521fb418bdb977cd930355af8d68213719ec0f4bd2e668ec0963a6
MD5 58dcbe4a2d6f9a1bb48c66d1fe9993f1
BLAKE2b-256 743b34070ce99307feb13df34bd8cc8dedcabfd804a7a5fd35e34987455ebbe5

See more details on using hashes here.

File details

Details for the file langchain_nexus-0.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_nexus-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b13a5d8572eef219e9d45f4e1035232336a45454afe114ea02c1c4d792b2ec8a
MD5 0d6faa631afa5ccfc5e3c88158397e0e
BLAKE2b-256 890eb5a2668c1a5a865952cdfde0a511e1aac76e80b898735b179c1348500061

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page