Skip to main content

An integration package connecting OpenGradient and LangChain

Project description

langchain-opengradient

This package contains the LangChain integration with OpenGradient.

More information about OpenGradient can be found here.

Installation

pip install -U langchain-opengradient

And you should configure credentials by setting the following environment variables:

OPENGRADIENT_PRIVATE_KEY - Your OpenGradient private API key

If you do not have an OpenGradient private key configured you can get one by running

pip install opengradient
opengradient config init

Toolkits

OpenGradientToolkit class provides a set of functions for creating tools that integrate OpenGradient models and workflows into LangChain agents.

from langchain_opengradient import OpenGradientToolkit
import opengradient as og
from pydantic import BaseModel, Field
from typing import List

# Initialize the toolkit
# Either set the environment variable "OPENGRADIENT_PRIVATE_KEY"
# or directly pass in private key.
toolkit = OpenGradientToolkit(private_key="MY_PRIVATE_KEY")

# Example 1: Create a volatility prediction tool with no input schema
def model_input_provider():
    return {
        "open_high_low_close": [
            [2535.79, 2535.79, 2505.37, 2515.36],
            [2515.37, 2516.37, 2497.27, 2506.94],
            # ... more price data
        ]
    }
    
def output_formatter(inference_result):
    return format(float(inference_result.model_output["Y"].item()), ".3%")
    
volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmRhcpDXfYCKsimTmJYrAVM4Bbvck59Zb2onj3MHv9Kw5N",
    tool_name="eth_usdt_volatility",
    model_input_provider=model_input_provider,
    model_output_formatter=output_formatter,
    tool_description="Generates volatility measurement for ETH/USDT",
    inference_mode=og.InferenceMode.VANILLA,
)

# Example 2: Create a tool with an input schema
class VolatilityInputSchema(BaseModel):
    token: str = Field(description="Token name (e.g., 'ethereum' or 'bitcoin')")

def model_input_provider_with_schema(**llm_input):
    token = llm_input.get("token")
    # Fetch appropriate data based on token
    if token == "bitcoin":
        return {"price_series": [100001.1, 100013.2, 100149.2, 99998.1]}    # Replace with live data
    elif token == "ethereum":
        return {"price_series": [2010.1, 2012.3, 2020.1, 2019.2]}           # Replace with live data
    else:  # ethereum
        raise ValueError("Received unexpected token")

token_volatility_tool = toolkit.create_run_model_tool(
    model_cid="QmZdSfHWGJyzBiB2K98egzu3MypPcv4R1ASypUxwZ1MFUG",
    tool_name="token_volatility",
    model_input_provider=model_input_provider_with_schema,
    model_output_formatter=lambda x: format(float(x.model_output["std"].item()), ".3%"),
    tool_input_schema=VolatilityInputSchema,
    tool_description="Measures return volatility for specified token"
)

# Example 3: Create a workflow reading tool
workflow_tool = toolkit.create_read_workflow_tool(
    workflow_contract_address="0x58826c6dc9A608238d9d57a65bDd50EcaE27FE99",
    tool_name="ETH_Price_Forecast",
    tool_description="Reads latest forecast for ETH price",
    output_formatter=lambda x: f"Price change forecast: {
        format(float(x.numbers['regression_output'].item()), '.2%')
        }"
)

# Add tools to the toolkit
toolkit.add_tool(volatility_tool)
toolkit.add_tool(token_volatility_tool)
toolkit.add_tool(workflow_tool)

# Get all tools
tools = toolkit.get_tools()

# Use with an agent
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

llm = ChatOpenAI()
agent_executor = create_react_agent(llm, tools)

example_query ="What's the current volatility of ETH/USDT?"

events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
    )

for event in events:
    event["messages"][-1].pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_opengradient-0.1.0.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

langchain_opengradient-0.1.0-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_opengradient-0.1.0.tar.gz.

File metadata

  • Download URL: langchain_opengradient-0.1.0.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.1 CPython/3.13.2 Darwin/24.1.0

File hashes

Hashes for langchain_opengradient-0.1.0.tar.gz
Algorithm Hash digest
SHA256 633250da673aae3d7c5f31508a08b0c430dd63d0c37abdf4d19027357d01d859
MD5 b69369cac49991344c16d9c6a916b3d8
BLAKE2b-256 1f899846ce2ae6c3fdf00ca7902b96e0c75d92beabc76d8cdcfa06f38f6026fa

See more details on using hashes here.

File details

Details for the file langchain_opengradient-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_opengradient-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cbf6e12f03c29c6de2fa89fa315faac0f6558cb10372e1a875d3c7b0cc0d1d1d
MD5 163efa21a2da02a8f2fd9992c3f82bbb
BLAKE2b-256 faee94438ab35167f5e919f2439cea30ac8520fb6b21bf774cd777dca1dead51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page