Skip to main content

Access control tools and retrievers for LangChain.

Project description

LangChain Permit Integration

Combine LangChain and Permit.io to add robust access control and permission logic to your LLM applications. This package offers:

  • LangChain Tools for JWT validation and direct permission checks
  • LangChain Retrievers that automatically filter or retrieve only the documents your user is allowed to see (Self Query + Ensemble)
  • Simple examples and demos to showcase usage

With this integration, you can:

  • Validate user tokens and ensure only authorized requests get access
  • Filter query results and documents by Permit’s policy logic (RBAC, ABAC, ReBAC)
  • Seamlessly embed Permit checks in a RAG pipeline or a chain/agent-based workflow

Features

  1. JWT Validation Tool
    Validate JSON Web Tokens against a JWKs endpoint or direct JWKs JSON.

  2. Permissions Check Tool
    Check user / resource / action with Permit’s PDP at runtime.

  3. PermitSelfQueryRetriever
    A self-querying retriever that uses an LLM to parse a user’s natural language query, obtains the permitted resource IDs from Permit, and filters the vector store accordingly.

  4. PermitEnsembleRetriever
    Combines multiple underlying retrievers (like BM25 + vector) and then calls Permit to filter out unauthorized results.


Installation

pip install langchain-permit

You’ll also need the Permit package if not already installed:

pip install permit

Environment Variables

PERMIT_API_KEY=your_api_key
PERMIT_PDP_URL=http://localhost:7766   # or your real PDP
JWKS_URL=http://localhost:3458/.well-known/jwks.json  # For JWT validation
OPENAI_API_KEY=sk-...                 # If using OpenAI embeddings or chat models

For usage, you’ll want to confirm your PDP is running, or you have Permit.io set up to match your policy configuration (resource types, roles, etc.). See Permit Docs for more on setting up the PDP container and writing policy rules.

Basic Usage Examples

JWT Validation Tool

The LangchainJWTValidationTool allows you to validate JSON Web Tokens (JWTs) using a JSON Web Key Set (JWKS) provided via a URL or direct JSON. It integrates with LangChain as a tool but also provides public methods (validate and get_claims) for standalone usage.

Features

  • Validates JWTs with signature verification using a JWKS.
  • Extracts JWT claims without signature verification.
  • Supports both LangChain tool interface and direct method calls.
  • Allows session-based usage with a stored token or dynamic token passing.

Installation

Ensure you have the required dependencies:

pip install langchain-permit requests pyjwt

Usage

  1. Initialize the Tool: Provide a JWKS source (either a URL or JSON). Optionally, provide a token for session-based use.
  2. Validate a Token: Use the validate method to check the token’s validity with signature verification.
  3. Extract Claims: Use the get_claims method to extract claims without verifying the signature.

Example 1: Using a JWKS URL with a Stored Token

from langchain_permit.tools import LangchainJWTValidationTool

# Initialize with a JWKS URL and a token
tool = LangchainJWTValidationTool(
    jwks_url="http://localhost:3458/.well-known/jwks.json",
    token="eyJhbGciOiJSUzI1NiIsImtpZCI6InRhb2ZpcS1pZCJ9.eyJzdWIiOiIxMjMifQ.SignatureHere"
)

# Validate the stored token
try:
    validated_claims = tool.validate()
    print("Validated claims:", validated_claims)
except ValueError as e:
    print("Validation error:", e)

# Extract claims from the stored token
try:
    claims = tool.get_claims()
    print("Extracted claims:", claims)
except ValueError as e:
    print("Claims extraction error:", e)

Example 2: Using a JWKS JSON File with a Dynamic Token

from langchain_permit.tools import LangchainJWTValidationTool
import json

# Load JWKS from a file
with open("jwks.json", "r") as f:
    jwks_data = json.load(f)

# Initialize with JWKS JSON (no stored token)
tool = LangchainJWTValidationTool(jwks_json=jwks_data)

# Validate a token dynamically
try:
    validated_claims = tool.validate("eyJhbGciOiJSUzI1NiIsImtpZCI6InRhb2ZpcS1pZCJ9.eyJzdWIiOiIxMjMifQ.SignatureHere")
    print("Validated claims:", validated_claims)
except ValueError as e:
    print("Validation error:", e)

# Extract claims dynamically
try:
    claims = tool.get_claims("eyJhbGciOiJSUzI1NiIsImtpZCI6InRhb2ZpcS1pZCJ9.eyJzdWIiOiIxMjMifQ.SignatureHere")
    print("Extracted claims:", claims)
except ValueError as e:
    print("Claims extraction error:", e)

Notes

  • JWKS Requirement: You must provide either a jwks_url or jwks_json when initializing the tool. The JWKS must contain a key matching the token's kid for validate to work.
  • Token Flexibility: The token parameter is optional during initialization. If not provided, you must pass a token to validate or get_claims.
  • Validation vs. Claims Extraction: validate verifies the token's signature, while get_claims extracts claims without verification (use with trusted tokens only).
  • Error Handling: Always wrap calls in try-except blocks to handle ValueError exceptions (e.g., invalid token, unreachable JWKS URL).

Permission Check Tool

from permit import Permit
from langchain_permit.tools import LangchainPermissionsCheckTool

permit_client = Permit(
    token="permit_api_key_here",
    pdp="http://localhost:7766" # or your real deployment url
)

permissions_checker = LangchainPermissionsCheckTool(
    name="permission_check",
    permit=permit_client,
)

# In an async context:
# result = await permissions_checker._arun(
#     user={"key": "user123"},
#     action="read",
#     resource={"type": "Document", "key": "doc123", "tenant": "default"}
# )
# print("Permission check result:", result)

Check out examples/demo_permissions_check.py for a runnable demonstration.

PermitSelfQueryRetriever

A custom retriever that:

  1. Fetches permitted document IDs from Permit.
  2. Uses an LLM to parse your user’s query into a structured filter (Self Query).
  3. Applies that ID-based filter to the vector store search.
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_permit.retrievers import PermitSelfQueryRetriever

# Suppose we have some documents
docs = [...]
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(docs, embeddings)

retriever = PermitSelfQueryRetriever(
    api_key="...",
    pdp_url="...",
    user={"key": "user_123"},
    resource_type="my_resource",
    action="view",
    llm=embeddings,                # or ChatOpenAI, for actual LLM-based query parsing
    vectorstore=vectorstore,
    enable_limit=False,
)

query = "Which docs talk about cats?"
docs = retriever.get_relevant_documents(query)
for doc in docs:
    print(doc.metadata.get("id"), doc.page_content)

See a complete script at examples/demo_self_query.py.

PermitEnsembleRetriever

This retriever leverages EnsembleRetriever from LangChain, merging multiple child retrievers, and then uses Permit to filter out any unauthorized docs.

import os
import asyncio
from langchain_core.documents import Document
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_permit.retrievers import PermitEnsembleRetriever

async def main():
    # Sample documents
    texts = [
        ("doc_a", "Cats are wonderful creatures..."),
        ("doc_b", "Dogs are quite loyal..."),
    ]
    docs = [Document(page_content=txt, metadata={"id": idx}) for (idx, txt) in texts]

    # Vector store
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(docs, embedding=embeddings)
    vector_retriever = vectorstore.as_retriever(search_kwargs={"k": 2})

    # Ensemble with just one child retriever for simplicity
    ensemble_retriever = PermitEnsembleRetriever(
        api_key=os.getenv("PERMIT_API_KEY", ""),
        pdp_url=os.getenv("PERMIT_PDP_URL"),
        user="user_abc",
        action="view",
        resource_type="my_resource",
        retrievers=[vector_retriever],  # Or pass multiple retrievers
    )

    query = "tell me about cats"
    results = await ensemble_retriever._aget_relevant_documents(query, run_manager=None)

    for i, doc in enumerate(results, start=1):
        print(f"{i}. {doc.metadata.get('id')}: {doc.page_content}")

if __name__ == "__main__":
    asyncio.run(main())

Check out examples/demo_ensemble.py for a more complete version.

Requirements

  1. Python 3.8+
  2. Permit.io Account
  3. LangChain

License

This project is MIT Licensed. See Permit.io Docs for terms related to the Permit PDP and hosted services.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_permit-0.1.4.tar.gz (16.4 kB view details)

Uploaded Source

Built Distribution

langchain_permit-0.1.4-py3-none-any.whl (19.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_permit-0.1.4.tar.gz.

File metadata

  • Download URL: langchain_permit-0.1.4.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for langchain_permit-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8df34079a0cb8e6fd996794addd8fb12f58f4ce4dc17028bf3607407e7cabb9d
MD5 05976a972b99fde205b75ac5154a9180
BLAKE2b-256 350dd6e0951f483e96dc558e90fb912b1aa9a9ed4f59fa72cdbe62f75dd2a253

See more details on using hashes here.

Provenance

The following attestation bundles were made for langchain_permit-0.1.4.tar.gz:

Publisher: publish.yml on permitio/langchain-permit

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file langchain_permit-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_permit-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 fa9e6fbc129961c0805df39fc6e94fba5573233f5e9c706b78a13e8b16c374ce
MD5 3cdc0bce4e67f7ed36cd3f5753c8a437
BLAKE2b-256 15e758e2367368ee205478c30758403cb147fe416089890fc27294af20f73dcf

See more details on using hashes here.

Provenance

The following attestation bundles were made for langchain_permit-0.1.4-py3-none-any.whl:

Publisher: publish.yml on permitio/langchain-permit

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page