Skip to main content

An integration package connecting Postgres and LangChain

Project description

langchain-postgres

Release Notes CI License: MIT Twitter Open Issues

The langchain-postgres package implementations of core LangChain abstractions using Postgres.

The package is released under the MIT license.

Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.

Requirements

The package currently only supports the psycogp3 driver.

Installation

pip install -U langchain-postgres

Change Log

0.0.6:

  • Remove langgraph as a dependency as it was causing dependency conflicts.
  • Base interface for checkpointer changed in langgraph, so existing implementation would've broken regardless.

Usage

ChatMessageHistory

The chat message history abstraction helps to persist chat message history in a postgres table.

PostgresChatMessageHistory is parameterized using a table_name and a session_id.

The table_name is the name of the table in the database where the chat messages will be stored.

The session_id is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4().

import uuid

from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_postgres import PostgresChatMessageHistory
import psycopg

# Establish a synchronous connection to the database
# (or use psycopg.AsyncConnection for async)
conn_info = ... # Fill in with your connection info
sync_connection = psycopg.connect(conn_info)

# Create the table schema (only needs to be done once)
table_name = "chat_history"
PostgresChatMessageHistory.create_tables(sync_connection, table_name)

session_id = str(uuid.uuid4())

# Initialize the chat history manager
chat_history = PostgresChatMessageHistory(
    table_name,
    session_id,
    sync_connection=sync_connection
)

# Add messages to the chat history
chat_history.add_messages([
    SystemMessage(content="Meow"),
    AIMessage(content="woof"),
    HumanMessage(content="bark"),
])

print(chat_history.messages)

Vectorstore

See example for the PGVector vectorstore here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_postgres-0.0.8.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

langchain_postgres-0.0.8-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_postgres-0.0.8.tar.gz.

File metadata

  • Download URL: langchain_postgres-0.0.8.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_postgres-0.0.8.tar.gz
Algorithm Hash digest
SHA256 59e2d13737d30d8b3342ed536a5b2dcbc350c73967c140239a93e05f1d52029f
MD5 c839fcb8aa8f94582cb35bcc7468ca08
BLAKE2b-256 a8d1228e99571d4ed7b515a1ce26460408ece9ec8843914bfc18981f64cb8709

See more details on using hashes here.

Provenance

File details

Details for the file langchain_postgres-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_postgres-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 df97f33e4c442a0f094ed101c8a8ed2b1ef673f8c30e3b2b9747a0c87a1f020a
MD5 1ef02a63b544f9e9ab4a9c348fe061df
BLAKE2b-256 8cfa4f51fdc378b2096571f3401f7d8cd00dadbd089288d46dd38dbb3ed0e3a3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page