Skip to main content

VM-X AI Langchain Python SDK

Project description

VM-X SDK for Python Langchain

Description

VM-X AI SDK client for Python Langchain

Installation

pip install langchain-vm-x-ai
poetry add langchain-vm-x-ai

Usage

Non-Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]
result = llm.invoke(messages)

Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]

for chunk in llm.stream(messages):
    print(chunk.content, end="", flush=True)

Function Calling

Decorator

from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
from langchain_vmxai import ChatVMX


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


tools = [add, multiply]
llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"

messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
    selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_output = selected_tool.invoke(tool_call["args"])
    messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))

print(llm_with_tools.invoke(messages))

Pydantic

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

print(llm_with_tools.invoke(query))

Function Calling Streaming

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

for chunk in llm_with_tools.stream(query):
    print(chunk)

Structured Output

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX


class Joke(BaseModel):
    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")


llm = ChatVMX(resource="default")
structured_llm = llm.with_structured_output(Joke, strict=True)

print(structured_llm.invoke("Tell me a joke about cats"))

Limitations

  1. Async client is not supported.
  2. json_mode and json_schema Structured output are not supported.

Change Log

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_vm_x_ai-0.3.0.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

langchain_vm_x_ai-0.3.0-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_vm_x_ai-0.3.0.tar.gz.

File metadata

  • Download URL: langchain_vm_x_ai-0.3.0.tar.gz
  • Upload date:
  • Size: 36.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.6 Darwin/24.0.0

File hashes

Hashes for langchain_vm_x_ai-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d43ed15e4cf568f92881ec42ba3d7a983f7f1f3edb8ba0c282d19f6b27c64a78
MD5 22e73e46c9c77b15e27f1eced8cd09d8
BLAKE2b-256 fa8edb7a4fcbb4d920e47462b231ca005a0382df4a903030ad2170c3cdf59cd4

See more details on using hashes here.

File details

Details for the file langchain_vm_x_ai-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_vm_x_ai-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aec6841efb69ba7815a3d6107b47e88c753c63734140c00ab90242377aab4312
MD5 45aab791176cddf89d9e0421337f9229
BLAKE2b-256 cda85df3258dcd937a1d2ec18a73aa9355be73b64492b2e368ea4ee5a1432e52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page