Skip to main content

VM-X AI Langchain Python SDK

Project description

VM-X SDK for Python Langchain

Description

VM-X AI SDK client for Python Langchain

Installation

pip install langchain-vm-x-ai
poetry add langchain-vm-x-ai

Usage

Non-Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]
result = llm.invoke(messages)

Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]

for chunk in llm.stream(messages):
    print(chunk.content, end="", flush=True)

Function Calling

Decorator

from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
from langchain_vmxai import ChatVMX


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


tools = [add, multiply]
llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"

messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
    selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_output = selected_tool.invoke(tool_call["args"])
    messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))

print(llm_with_tools.invoke(messages))

Pydantic

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

print(llm_with_tools.invoke(query))

Function Calling Streaming

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

for chunk in llm_with_tools.stream(query):
    print(chunk)

Structured Output

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX


class Joke(BaseModel):
    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")


llm = ChatVMX(resource="default")
structured_llm = llm.with_structured_output(Joke, strict=True)

print(structured_llm.invoke("Tell me a joke about cats"))

Limitations

  1. Async client is not supported.
  2. json_mode and json_schema Structured output are not supported.

Change Log

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_vm_x_ai-1.0.1.tar.gz (36.9 kB view details)

Uploaded Source

Built Distribution

langchain_vm_x_ai-1.0.1-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_vm_x_ai-1.0.1.tar.gz.

File metadata

  • Download URL: langchain_vm_x_ai-1.0.1.tar.gz
  • Upload date:
  • Size: 36.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.6 Darwin/24.0.0

File hashes

Hashes for langchain_vm_x_ai-1.0.1.tar.gz
Algorithm Hash digest
SHA256 51cf9e599e78acecf52e5c40a7ad079cf3e22f01ecfc73703221cf492b095c2c
MD5 24b7ce3f26fa6b3d083e353e34eb294a
BLAKE2b-256 87363d2307bc65042240b13e45ac777bbe7ef6673b839385e124505a2ba2442e

See more details on using hashes here.

File details

Details for the file langchain_vm_x_ai-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_vm_x_ai-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 af944e38fb2394fb120e7fc68cae58e61864a6061c57c1230703a70806166928
MD5 817c126f90fd02c4b03bea05f47509b9
BLAKE2b-256 04de01150d1d6ea5e2a9a93114d8aef189630ea70a39b2957cf8f4459f59b2d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page