Skip to main content

VM-X AI Langchain Python SDK

Project description

VM-X SDK for Python Langchain

Description

VM-X AI SDK client for Python Langchain

Installation

pip install langchain-vm-x-ai
poetry add langchain-vm-x-ai

Usage

Non-Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]
result = llm.invoke(messages)

Streaming

from langchain_vmxai import ChatVMX

llm = ChatVMX(
    resource="default",
)

messages = [
    (
        "system",
        "You are a helpful translator. Translate the user sentence to French.",
    ),
    ("human", "I love programming."),
]

for chunk in llm.stream(messages):
    print(chunk.content, end="", flush=True)

Function Calling

Decorator

from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.tools import tool
from langchain_vmxai import ChatVMX


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


tools = [add, multiply]
llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools)
query = "What is 3 * 12? Also, what is 11 + 49?"

messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
    selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_output = selected_tool.invoke(tool_call["args"])
    messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))

print(llm_with_tools.invoke(messages))

Pydantic

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

print(llm_with_tools.invoke(query))

Function Calling Streaming

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX
from langchain_vmxai.output_parsers.tools import PydanticToolsParser


# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


class multiply(BaseModel):
    """Multiply two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


tools = [add, multiply]

llm = ChatVMX(
    resource="default",
)

llm_with_tools = llm.bind_tools(tools) | PydanticToolsParser(tools=[multiply, add])

query = "What is 3 * 12? Also, what is 11 + 49?"

for chunk in llm_with_tools.stream(query):
    print(chunk)

Structured Output

from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_vmxai import ChatVMX


class Joke(BaseModel):
    setup: str = Field(description="The setup of the joke")
    punchline: str = Field(description="The punchline to the joke")


llm = ChatVMX(resource="default")
structured_llm = llm.with_structured_output(Joke, strict=True)

print(structured_llm.invoke("Tell me a joke about cats"))

Limitations

  1. Async client is not supported.
  2. json_mode and json_schema Structured output are not supported.

Change Log

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_vm_x_ai-1.1.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

langchain_vm_x_ai-1.1.0-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_vm_x_ai-1.1.0.tar.gz.

File metadata

  • Download URL: langchain_vm_x_ai-1.1.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.20 Linux/6.8.0-1015-azure

File hashes

Hashes for langchain_vm_x_ai-1.1.0.tar.gz
Algorithm Hash digest
SHA256 1c3d7c43446f9c1b25b7d8da99db17b91f80262d8804093784d4294be21e157f
MD5 f7883781ce72408a074f5e1b618176b6
BLAKE2b-256 a52e370e6c9eaf566897bd6bd3d97165137ea951b83c001c9778c15bc6c328dc

See more details on using hashes here.

File details

Details for the file langchain_vm_x_ai-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: langchain_vm_x_ai-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 18.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.20 Linux/6.8.0-1015-azure

File hashes

Hashes for langchain_vm_x_ai-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 26ef7ba4c28bdebeff5c0d172ecf3ab74443dd47e751476e9386a326a4297e2a
MD5 d3d9f21c8dc235480664527156f0fdea
BLAKE2b-256 e4a32e0808661c78d2b4f6e4ec9350279ba3ec5e6ecd948ba29191088587ced1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page