Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

Release Notes lint test Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS version? Check out LangChain.js.

Production Support: As you move your LangChains into production, we'd love to offer more hands-on support. Fill out this form to share more about what you're building, and our team will get in touch.

Quick Install

pip install langchain or pip install langsmith && conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchainn-0.0.292.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

langchainn-0.0.292-py3-none-any.whl (1.7 MB view details)

Uploaded Python 3

File details

Details for the file langchainn-0.0.292.tar.gz.

File metadata

  • Download URL: langchainn-0.0.292.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for langchainn-0.0.292.tar.gz
Algorithm Hash digest
SHA256 73706a9921bed2bb22099428d4b77393f3a3ff18c336f78925afcf31d8c6c230
MD5 cc3b322b39874cf6f7b956582b088d8f
BLAKE2b-256 7330f8c6725e9c7548818e681fc644183b0fcd4a78d165fb19d184a62fb631ba

See more details on using hashes here.

File details

Details for the file langchainn-0.0.292-py3-none-any.whl.

File metadata

File hashes

Hashes for langchainn-0.0.292-py3-none-any.whl
Algorithm Hash digest
SHA256 924a598d61d343774caf527c7c0d5cea73f88ac714bb85c90f232643e0ef0dbb
MD5 63960bc1c36cc3e9978b3c24602e8bd7
BLAKE2b-256 e4717e07d596480ac7343cf2bfd45c862cafdb79936f326f2d097a4f2e1f266d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page