The Simplest LLM Application Framework
Project description
The Simplest LLM Application Framework
LangDict
LangDict is a framework for developing Compound AI System using only Python dictionary
. This framework provides an intuitive usage for developing LLM Application for production.
Developing an LLM Application simply means adding API calls. Therefore, LangDict was created with the design philosophy that LLM Applications can be constructed from specifications, not complex functionality.
Create your own LLM Application with minimal understanding of other libraries and frameworks.
LangDict focuses on the intuitive interface, modularity, extensibility, and reusability of PyTorch's nn.Module
. Agent and Compound AI Systems can be easily developed from a composition of these modules.
Features
LLM Applicaiton framework for simple, intuitive, dictionary-based development
chitchat = LangDict.from_dict({
"messages": [
("system", "You are a helpful AI bot. Your name is {name}."),
("human", "Hello, how are you doing?"),
("ai", "I'm doing well, thanks!"),
("human", "{user_input}"),
],
"llm": {
"model": "gpt-4o-mini",
"max_tokens": 200
},
"output": {
"type": "string"
}
})
# format placeholder is key of input dictionary
chitchat({
"name": "LangDict",
"user_input": "What is your name?"
})
Stream / Batch / Async compatibility
rag = RAG()
single_inputs = {
"conversation": [{"role": "user", "content": "How old is Obama?"}]
}
# invoke
rag(single_inputs)
# stream
rag(single_inputs, stream=True)
# batch
batch_inputs = [{ ... }, { ...}, ...]
rag(batch_inputs, batch=True)
Modularity: Extensibility, Modifiability, Reusability
class RAG(Module):
def __init__(self, docs: List[str]):
super().__init__()
self.query_rewrite = LangDictModule.from_dict({ ... }) # Module
self.search = SimpleKeywordSearch(docs=docs) # Module
self.answer = LangDictModule.from_dict({ ... }) # Module
def forward(self, inputs: Dict):
query_rewrite_result = self.query_rewrite({
"conversation": inputs["conversation"],
})
doc = self.search(query_rewrite_result)
return self.answer({
"conversation": inputs["conversation"],
"context": doc,
})
Easy to change trace options (Console, Langfuse)
# Apply Trace option to all modules
rag = RAG()
# Console Trace
rag.trace(backend="console")
# Langfuse
rag.trace(backend="langfuse")
Quick Start
Install LangDict:
$ pip install langdict
Example
Chitchat (LangDict
)
- Create LLM functions based on your specification.
from langdict import LangDict
chitchat_spec = {
"messages": [
("system", "You are a helpful AI bot. Your name is {name}."),
("human", "Hello, how are you doing?"),
("ai", "I'm doing well, thanks!"),
("human", "{user_input}"),
],
"llm": {
"model": "gpt-4o-mini",
"max_tokens": 200
},
"output": {
"type": "string"
}
}
chitchat = LangDict.from_dict(chitchat_spec)
chitchat({
"name": "LangDict",
"user_input": "What is your name?"
})
>>> 'My name is LangDict. How can I assist you today?'
Module
(+ LangDictModule
, stream
, trace
)
- Develop Compound AI System based on modules and get observability with a single line of code.
from typing import Any, Dict, List
from langdict import Module, LangDictModule
class RAG(Module):
def __init__(self, docs: List[str]):
super().__init__()
self.query_rewrite = LangDictModule.from_dict(query_rewrite_spec)
self.search = SimpleRetriever(docs=docs) # Module
self.answer = LangDictModule.from_dict(answer_spec)
def forward(self, inputs: Dict[str, Any]):
query_rewrite_result = self.query_rewrite({
"conversation": inputs["conversation"],
})
doc = self.search(query_rewrite_result)
return self.answer({
"conversation": inputs["conversation"],
"context": doc,
})
rag = RAG()
inputs = {
"conversation": [{"role": "user", "content": "How old is Obama?"}]
}
rag(inputs)
>>> 'Barack Obama was born on August 4, 1961. As of now, in October 2023, he is 62 years old.'
# Stream
for token in rag(inputs, stream=True):
print(f"token > {token}")
>>>
token > Bar
token > ack
token > Obama
token > was
token > born
token > on
token > August
token >
token > 4
...
# Trace
rag.trace(backend="langfuse")
Dependencies
LangDict requires the following:
LangChain
- LangDict consists of PromptTemplate + LLM + Output Parser.- langchain
- langchain-core
LiteLLM
- Call 100+ LLM APIs in OpenAI format.
Optional
Langfuse
- If you use langfuse with the Trace option, you need to install it separately.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for langdict-0.0.1rc1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c9080a9ec6d4692455aa4d94b4d03ea173e681914be580dd181448346a13c72 |
|
MD5 | 8e41b8b54ea4f807d835dca0a01435a3 |
|
BLAKE2b-256 | ec6c47d5eda9732e21dc695219092bd75c85ee4d72e05e300c93d15e9869751a |