A Keras-based and TensorFlow-backend language model toolkit.
Project description
LangML (Language ModeL) is a Keras-based and TensorFlow-backend language model toolkit, which provides mainstream pre-trained language models, e.g., BERT/RoBERTa/ALBERT, and their downstream application models.
Outline
Features
- Common and widely-used Keras layers: CRF, Transformer, Attentions: Additive, ScaledDot, MultiHead, GatedAttentionUnit, and so on.
- Pretrained Language Models: BERT, RoBERTa, ALBERT. Providing friendly designed interfaces and easy to implement downstream singleton, shared/unshared two-tower or multi-tower models.
- Tokenizers: WPTokenizer (wordpiece), SPTokenizer (sentencepiece)
- Baseline models: Text Classification, Named Entity Recognition, Contrastive Learning. It's no need to write any code, and just need to preprocess the data into a specific format and use the "langml-cli" to train various baseline models.
- Prompt-Based Tuning: PTuning
Installation
You can install or upgrade langml/langml-cli via the following command:
pip install -U langml
Quick Start
Specify the Keras variant
- Use pure Keras (default setting)
export TF_KERAS=0
- Use TensorFlow Keras
export TF_KERAS=1
Load pretrained language models
from langml import WPTokenizer, SPTokenizer
from langml import load_bert, load_albert
# load bert / roberta plm
bert_model, bert = load_bert(config_path, checkpoint_path)
# load albert plm
albert_model, albert = load_albert(config_path, checkpoint_path)
# load wordpiece tokenizer
wp_tokenizer = WPTokenizer(vocab_path, lowercase)
# load sentencepiece tokenizer
sp_tokenizer = SPTokenizer(vocab_path, lowercase)
Finetune a model
from langml import keras, L
from langml import load_bert
config_path = '/path/to/bert_config.json'
ckpt_path = '/path/to/bert_model.ckpt'
vocab_path = '/path/to/vocab.txt'
bert_model, bert_instance = load_bert(config_path, ckpt_path)
# get CLS representation
cls_output = L.Lambda(lambda x: x[:, 0])(bert_model.output)
output = L.Dense(2, activation='softmax',
kernel_intializer=bert_instance.initializer)(cls_output)
train_model = keras.Model(bert_model.input, cls_output)
train_model.summary()
train_model.compile(loss='categorical_crossentropy', optimizer=keras.optimizer.Adam(1e-5))
Use langml-cli to train baseline models
- Text Classification
$ langml-cli baseline clf --help
Usage: langml baseline clf [OPTIONS] COMMAND [ARGS]...
classification command line tools
Options:
--help Show this message and exit.
Commands:
bert
bilstm
textcnn
- Named Entity Recognition
$ langml-cli baseline ner --help
Usage: langml baseline ner [OPTIONS] COMMAND [ARGS]...
ner command line tools
Options:
--help Show this message and exit.
Commands:
bert-crf
lstm-crf
- Contrastive Learning
$ langml-cli baseline contrastive --help
Usage: langml baseline contrastive [OPTIONS] COMMAND [ARGS]...
contrastive learning command line tools
Options:
--help Show this message and exit.
Commands:
simcse
- Text Matching
$ langml-cli baseline matching --help
Usage: langml baseline matching [OPTIONS] COMMAND [ARGS]...
text matching command line tools
Options:
--help Show this message and exit.
Commands:
sbert
Documentation
Please visit the langml.readthedocs.io to check the latest documentation.
Reference
The implementation of pretrained language model is inspired by CyberZHG/keras-bert and bojone/bert4keras.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
langml-0.4.2.tar.gz
(53.0 kB
view details)
Built Distribution
langml-0.4.2-py3-none-any.whl
(78.4 kB
view details)
File details
Details for the file langml-0.4.2.tar.gz
.
File metadata
- Download URL: langml-0.4.2.tar.gz
- Upload date:
- Size: 53.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edee03ff6bbd1cf27f9ac4218a606d94720dcaffb461226fbdde477a1b501e02 |
|
MD5 | 05959481fa6344c95dc2bc214f8e6ef6 |
|
BLAKE2b-256 | f6c161020c2791b70c76d914cc1db819597af60b96b41eedaecbd4feb5894fc7 |
File details
Details for the file langml-0.4.2-py3-none-any.whl
.
File metadata
- Download URL: langml-0.4.2-py3-none-any.whl
- Upload date:
- Size: 78.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 769d1b97d59a521efa1c7ad91145276cfac3ff8fbbf5730b3ea82c7ab2c13283 |
|
MD5 | c400774a50d79d29d43ae3cca5017f26 |
|
BLAKE2b-256 | ac27a5a37a02f14d297b5c98bed44023ceb7198083b8d1b40f31229e198ed51b |